ACCURATE, PARALLEL CLUSTERING OF

EST (GENE) SEQUENCES

by

Kevin Thomas Pedretti

A thesis submitted in partial fulfillment of the
requirements for the Master of Science
degree in Electrical and Computer Engineering
in the Graduate College of
The University of lowa

May 2001

Thesis supervisor: Professor Thomas L. Casavant

Graduate College
The University of Towa
Iowa City, lowa

CERTIFICATE OF APPROVAL

MASTER’S THESIS

This is to certify that the Master’s thesis of

Kevin Thomas Pedretti

has been approved by the Examining Committee for the
thesis requirement for the Master of Science degree in
Electrical and Computer Engineering at the May 2001
graduation.

Thesis committee:

Thesis supervisor

Member

Member

ACKNOWLEDGEMENTS

I would like to convey my gratitude to those who helped me on this project,
including my advisor, Thomas L. Casavant, and my fellow colleagues, Terry A. Braun,
Todd E. Scheetz, and Chad A. Roberts. This work would not have been possible

without all of your insightful ideas and feedback.

i

TABLE OF CONTENTS

LIST OF FIGURES e

CHAPTER

1 INTRODUCTIONo e

2 BACKGROUNDo

2.1

2.2

Biological Background,
2.1.1 Gene Structure
2.1.2 Alternative Splicing
2.1.3 Genome Sequencing
2.1.4 EST Sequencing
2.1.5 EST Clustering
Survey of Other EST Clustering Tools
221 NCBIUniGene
2.2.2 TIGR GeneIndex
223 ICAtools
2.24 SANBISTACK

3 PROBLEM STATEMENT

4 APPROACH

4.1

4.2

Fundamentals o o oL
4.1.1 Program Parameters
4.1.2 Organization of Outputs
Optimization L
421 Hashing
4.2.2 Global Hash Table
4.2.3 Parallel Execution

1

Page

vi

5 IMPLEMENTATION o . 32

5.1 Common Implementation Details 32
5.1.1 High Level Solution Structure 33
5.1.2 Comparing Sequences 36
5.1.3 Hashing 40

5.2 TLcluster (Version 1) 42

5.3 Ulcluster 2.0 46
5.3.1 Global Hash Table 46
5.3.2 Extended Search 49
5.3.3 Reverse Complement Checking 49
5.3.4 Additional Minor Changes 50

5.4 Ulcluster 3.0 51
5.4.1 Parallel Execution ol
5.4.2 Virtual Primaries 52

5.5 Running Ulcluster 3.0 54
5.5.1 Compiling 25
5.5.2 Command Line Options and Usage 56
5.5.3 Output File Format 58

6 RESULTS 60

6.1 EST Sequencing Novelty Assessment 60

6.2 Generation of Gene Indices 62

6.3 Accuracy Assessmento 64
6.3.1 Comparisons to NCBI UniGene. 64
6.3.2 Analysis of Cluster Assemblies 66

6.4 Performance Assessment 67
6.4.1 Execution Time 67
6.4.2 Memory Usage 70
6.4.3 Parameter Variation 71

7 CONCLUSION AND FUTURE WORK 74

7.1 Alternative Transcript Identification 74
7.1.1 Without Genomic Sequence 75
7.1.2 With Genomic Sequence 75

7.2 Confirming Gene Predictions 76

7.3 Manual Curation Lo 76

7.4 Cluster Merging L 77

7.5 Long Transcribed Sequences 79

iv

7.6 Automatic Calculation of ("and A\ 80

7.7 ExtendMatch Improvements 80
APPENDIX UICLUSTER 3.0 SOURCE CODE 81
A.l1 Header Files 81
A.1.1 wuicluster.h o 81
A.1.2 clusterh 82
A.1.3 compareh 83
Al4 fastah 83
A.1.5 incrementalh 84
A1.6 memoryh 84
A7 optionsh . . .o 84
A1.8 qgsort.h 85
A19 wutilsh. 85
A1.10bl2seq.h 86

A.2 Source Files 86
A.2.1 main.c 86
A2.2 cluster.c 89
A2.3 compare.c. 105
A24 fasta.c. 111
A.2.5 incremental.c 114
A2.6 memory.c 118
A2.7 options.c 119
A28 qgsort.c 123
A29 wutils.e 125
A2.10 bl2seq.co 129
REFERENCES e 133

LIST OF FIGURES

Figure

2.1 DNA Double Helix (adapted from [33])
2.2 Gene Structure (adapted from [23])o
2.3 Alternative Splicing
2.4 Insertion, deletion and misread errors
2.5 High-level overview of EST sequencing
2.6 Example EST Sequence
5.1 High Level Data Flow
5.2 Basic Flow of Execution
5.3 Expanded Clustering Control Flow (line 4c from figure 5.2)
5.4 Example of ScoreMatch Execution
5.5 Example of Hashing a Sequence
5.6 Primary and Secondary Data Structures
5.7 Global Hash Table
5.8 UNIX Commands for Compiling UIcluster
5.9 UIcluster 3.0 Command-line Interface

vi

Page

6.1

6.2

6.3

6.4

6.5

6.6

7.1

Incremental Library Novelty 61

Comparing Clusters 65
TLcluster vs. Ulcluster 68
Parallel Speedup 69
Parallel Memory Scaling 70
Effects of clustering options on execution time 72
Cluster Viewer 78

vil

CHAPTER 1
INTRODUCTION

Sequencing of cDNA (complementary DNA) is influenced by an additive ran-
dom process which increases the potential for errors over DNA sequencing. In ad-
dition, the process by which ¢cDNA clones are selected for sequencing introduces re-
dundancy. For these reasons, automated software tools are necessary to classify large
data-sets of cDNAs into groups that roughly correspond to genes. Thus, a crucial tool
needed for this is a computer application to form clusters based on sequence similar-
ity from the raw cDNA sequence data. This thesis presents the design and evolution
of a program that has been created to accomplish this task with the characteristics
of flexibility, efficiency, and accuracy. Although there are several existing software
tools [27] [20] [2] [21] available that perform genetic sequence clustering accurately,
this program is unique in its high degree of flexibility and in its computational ef-
ficiency. Furthermore, the program is non-proprietary and may be freely obtained
from our project web site (http://genome.uiowa.edu).

An EST, or expressed sequence tag [1], is most generally a sequence obtained
by performing a single read of a random complementary DNA (cDNA) clone. A
specific type of EST sequenced from the 3’ end of a cDNA has the unique property

that it is analogous to a finger print — it can readily be used as a unique identifier for

a gene. Thus, high-throughput gene discovery projects generate large numbers of 3’
ESTs, in an effort to find new genes.

Clustering is the process of partitioning a set of elements into meaningful
groups (clusters) so that members of each group are more similar to each other than
to members of any other group. In the context presented here, ESTs and other
forms of genetic sequence are the elements being clustered and cluster membership
is determined based on sequence similarity. The ultimate goal is to partition the
elements so that each cluster represents all known genetic information for a single
gene or gene family. The importance of this result bears on several aspects, but the
principle of these is creating non-redundant indices of genes. These indices are an
essential tool for assessing novelty rates and guiding future gene discovery efforts.

An additional important use of clustering is to identify EST sequences that
have a high potential of being derived from an alternative transcript of a known
(or unknown) gene. A gene, as contained in genomic DNA, can often encode the
information necessary to produce multiple proteins. The genomic DNA is processed
by the cell into a messenger RNA (mRNA) transcript that in turn produces a protein.
Since ESTs are derived from post-spliced mRNA, they provide a convenient way to
identify different gene transcripts. Analysis of the consistency of the sequences in a
cluster can identify candidates that possibly represent alternative transcripts. Further
sequencing and genomic sequence data can then provide more thorough verification.

A brute-force, exhaustive solution to the clustering problem is not, however,

computationally feasible. An O(n?), where n is the number of sequences, computation
is required to identify all sequence similarities. This may be a sufficient approach for
100s or even a few 1000s of EST's, but it cannot possibly scale to data sets of millions
of ESTs. For data-sets of that size, heuristics must be employed to simplify the
computation. The task is to simplify the computation enough to be practical while
retaining sufficient accuracy to provide meaningful results.

The clustering program discussed in this thesis has been implemented and
proven to achieve both accuracy and performance. It has been developed over the
course of four years and has had three major releases. Each release has built upon
the prior by incorporating new functionality and increased performance. The first
version of the tool [26] was developed by Professor Thomas Casavant and released
in Fall 1998. The two subsequent versions have been developed by Kevin Pedretti
under the supervision of Professor Casavant. The robustness of this program has been
demonstrated by its daily use in the production pipeline of large-scale gene discovery
projects under way at the University of Iowa. Its use has resulted in the estimated
discovery of more than 40,000 new genes in three mammalian species (human, mouse,
and rat) [10].

Chapter 2 provides the biological background necessary to understand EST
clustering. Chapter 3 is comprised of a concise problem statement. Chapter 4 dis-
cusses the high-level approach used in the three releases of the program. Chapter

5 gives specific implementation details of each release. Chapter 6 presents results

obtained by using the program including accuracy and performance measurements.
Finally, Chapter 7 concludes with an outline of directions for future development.

The appendix lists the source code for the latest release, UICluster 3.0.

CHAPTER 2
BACKGROUND

This chapter will present the biological background necessary to understand
the basis for expressed sequence tag (EST) sequencing [1] and why the clustering of
ESTs is important. The last section of the chapter will present a survey of other EST

clustering programs.

2.1 Biological Background
2.1.1 Gene Structure

Current definitions of genes are inadequate and ambiguous in describing her-
itable units of a genome. Here, a gene is defined as a well structured and localized
region in the genome that encodes the information necessary for producing one or
more proteins. A gene is the basic unit of heredity, passing along traits such as eye
color and diseases such as cystic fibrosis. Having an extra gene, missing a gene, or
having a mutated gene are some of the mechanisms by which genetic diseases can
manifest themselves. However, disease inheritance is complicated and is not yet fully
understood. There are higher level interactions among genes and other structures
in the genome that play significant roles. Disease expression is also influenced by
the environment. Understanding every gene in the human genome is an anticipated

by-product of the current sequencing efforts, however this goal will take decades to

achieve.

The genome consists of DNA, which is the double-helix molecule located in
cell nuclei. An organism’s genome is located in the nucleic DNA of each of its cells.
Figure 2.1 shows the structure of a partial double-stranded region of DNA. The
double-helix structure can be thought of as taking a ladder and twisting it. Each rung
is composed of one purine base, adenine (A) or guanine (G), and one pyrimidine base,
cytosine (C) or thymine (T). Adenine exclusively pairs with thymine and guanine
exclusively pairs with cytosine. Each rung in the double-helix structure is commonly

referred to as a base pair (bp).

Figure 2.1: DNA Double Helix (adapted from [33])

The human genome is made up of 23 DNA molecules, called chromosomes,
containing an estimated 3x10° base pairs. These chromosomes are currently estimated
to contain between 30,000-40,000 protein coding genes [17]. An abstract view of a
gene’s structure is shown in figure 2.2.

A cell processes this structure by transcribing it (from the transcription start to

Start codon Codons Donor site
GCCGCCGCHNReB00TTCREEAACRBG TIGAGTGAG
Transcription T
Start LI .

Proméer /
crccchdfccTEes

Acceptor site

~—Exon

Stop Codon

Poly-A signal
Intron— X o o clehNy e o TCA clelclolololons
GCAGAAACAATAARACCA

Figure 2.2: Gene Structure (adapted from [23])

the Poly-A signal) into mRNA (messenger RNA), and then processing the mRNA by
concatenating the highlighted regions called exons. The final product represents the
information necessary to synthesize a single protein molecule. The removed regions,
represented in the figure by thin lines are called introns. Acceptor and donor sites,
located in the intronic regions and flanking each exon are the signals used by the

cellular machinery to identify exon boundaries and aid in the concatenation process.

2.1.2 Alternative Splicing
Concatenation appears to be a probabilistic process and exons are sometimes
skipped by the cell’s machinery, being left out of the final mRNA product. This
phenomenon is a mechanism by which a single gene can be translated into multiple
transcripts, each coding for a different protein. Approximately 30-40% of the genes
in the human genome are thought to have multiple transcripts [17]. Figure 2.3 shows

some examples of alternative splicing.

Exon 1 Exon 2 Exon 3

A) Three exons spliced together

B) Exon 2 skipped

Exon 1 ='on 2 Exon 3

C) First portion of exon 2 skipped

Figure 2.3: Alternative Splicing

2.1.3 Genome Sequencing
Genome sequencing is the process of identifying the base pair sequence of every
chromosome in an organism’s genome. The exact details of this process [24] are not

important for understanding this thesis. However, it is important to understand the

general nature of this process.

Automated sequencing machines have been developed to enable genome-level,
high-throughput sequencing projects to be feasible. These machines carry out many
sequencing reactions (a chemical reaction) in parallel. Current state-of-the-art tech-
nology allows for roughly 500-1000bp to be obtained in each sequencing reaction.
However, these reactions are error prone and tend to become even more error-prone
as sequencing lengths increase. There are three errors that can occur: bases can be
inserted, deleted, or misread. Examples of these three events are shown in figure 2.4.
Sequencing errors sometimes occur in groups, such as a run of multiple bases being
inserted/deleted. Also, the error-rates at the beginning and end of a sequencing re-
action are relatively higher than the error rates in the middle of a reaction (e.g. the

first 100bp and last 100bp of a reaction will have more errors).

True Sequence: TAGATTACAG
Deleted Base: TAGAT-ACAG
Inserted Base: TAGATATACAG
Misread Base: TAGATAACAG

Figure 2.4: Insertion, deletion and misread errors

For this reason, a given region of the genome must be sequenced many times
before a high-quality consensus sequence can be formed. The current standard of

the Human Genome Project is to have each base sequenced eight times (8x coverage)

10

before calling it finished.

2.1.4 EST Sequencing

An EST (expressed sequence tag) is a special type of sequence that is useful
for high-throughput gene discovery. Genome level sequencing produces the base pair
sequence of an organism’s genome but does nothing to identify where the genes are
located. Since less than 5% of the human genome codes for genes [17], identifying the
genes amounts to finding a needle in a haystack. Gene prediction programs such as
Genscan [7] and GRAIL [14] can be used to locate and computationally predict gene
structure (where the exons are), however they are limited in their accuracy. EST se-
quencing provides a shortcut to accurately and efficiently identifying genes directly by
sequencing the complimentary DNA (¢cDNA). cDNA has the intronic regions removed
and contains only the concatenated transcript of a gene.

Figure 2.5 shows a high level overview of EST sequencing [1]. To prepare for
EST sequencing, mRNA molecules are extracted from cells and converted into cDNA
through reverse transcription [5] [34]. The cDNAs are then cloned into vectors, and
electroporated into bacteria for growth, amplification, and storage. A collection of
such cDNAs is refereed to as a library. Each ¢cDNA library potentially contains many
unique and previously undiscovered gene transcripts. However significant redundancy
within a library (multiple copies of the same cDNA) and between libraries is normal.

High throughput EST sequencing for gene discovery involves sequencing the

3" untranslated region (UTR) of randomly chosen ¢cDNA transcripts from a cDNA

11
1) Genomic DNA (Chromosome)

Transcription

AMN Wi BRNN 2mRNA Incel

---------------- - Isolate MRNA =========sccccccccccccccccnnnn-.

In Tube
5 3

AN WN BRNN 5 mRna

“Reverse Transcription” (Imperfect)

33— 57

4) cDNA
5) EST Sequencing

5’ 3’

Figure 2.5: High-level overview of EST sequencing

library. The sequence is obtained by performing a single sequencing reaction, not the
multiple reactions as discussed in the previous section. Empirical studies have shown
that the error rate for EST sequencing is approximately 5% for misread errors, and
1-2% for insertion/deletion errors [6].

The 3" UTR sequence is the most divergent [1], and thus the most useful
portion of a transcript for identification purposes. It is on average 750bp long. The
probablility of another gene having the same 3 UTR is extremely low. The use of
a poly-T primer during reverse transcription allows for the preferential selection of
cDNAs with a poly-A tail at the 3’ ends. The presence of this feature allows for

sequencing to usually start from a known position (at the poly-A site).

12

2.1.5 EST Clustering

The massive number of EST sequences generated by high-throughput gene
discovery projects need to be clustered into groups based on sequence similarity.
Ideally, each cluster will exclusively contain all of the sequenced ESTs for a particular
gene. The results of doing this are used to assess the novelty rate of new sequences
and provide feedback information to the sequencing pipeline. If the novelty rates
reported by clustering (roughly equal to the gene discovery rate) fall below a certain
threshold, laboratory procedures can be performed to filter out already sequenced
transcripts from a ¢cDNA library [5].

Comparing pairs of ESTs and looking for similarity is the basic operation to
clustering. This comparison is complex because of the single-pass nature of EST
sequencing. As was already mentioned, bases can be inserted, deleted, or misread.
This means that some form of edit distance calculation is required to optimally derive
the similarity between two sequences.

From the computational perspective, an EST is a character string made up of
letters from the alphabet A, C, T, G, X, N where A, C, T, and G represent DNA
bases and X and N represent masked and ambiguous regions, respectively. A typical
EST sequence is shown in figure 2.6. Masked regions denote bases that have been
identified to be repetitive or contain low complexity. At least 45% of the human
genome consists of repetitive elements [17]. If masking were not performed, spurious

sequence similarities would be found. Ambiguous regions denote bases that could not

13

be accurately determined by the sequencing machine or base calling program. There
are examples of both of these types of regions in figure 2.6. 3’ ESTs are typically
between 400-1000bp in length. This is a limitation of the current gene sequencing

technology and the lengths may grow larger in the future.

>UI-R-AO0-ae-b-09-0-UI
TTTTTTTTTTTTTTTTTGATTTTCAATGATAAACTTTTATTCTGAATATACTGTTTTTGCACAAGATTTA
ACACAACATTTTCTGGGXXXXX XXX XXX XXX XX XXX XXX XX XXX XXX XXXXXXXXXXCAAAATGTGTTCA
TCCGACTAGTTAATTTCCACAAAAGTGTCCAGAGAACATAATAAGGGGGAGAAAAAAAATCTGTTGTTCA
CAAAAGCCACTTGGCGTTTTGCTTGATGCACAATGAGCATTTCATGAAGAGAATCCCTAAAACATGATCC
CACAGTCATACCGCACAAGGAAAGAACAGCTTGGCCAGGTCACATTGGAAACTCAATTGGCATTTACACC
GGACAGCATGCCAGGAGTCTCAGTGGAATTTCCATGGTTCTTTTTTGTGTGAACTAGAAACAAGGTATAC
GAAACCTCCCGTAACAGCAATCTATTTCTGCAAAATTCTGGCCATTTTCATGACCTGATAGTTCTGTTTT
AGTGATTTGCTCTTTACAGAAATATACACCAGATAGTGACCATATCAACATTCTGCCATGGAGAACAATG
CAAGTTCCAGCGAATGATAAAATAA

Figure 2.6: Example EST Sequence

2.2 Survey of Other EST Clustering Tools

This section briefly discusses other EST clustering tools.

2.2.1 NCBI UniGene
UniGene [27] is an experimental system used at the National Center for Biotech-
nology Information (NCBI) for automatically partitioning EST and other sequences
into non-redundant sets of gene-oriented clusters. Ideally, each UniGene cluster con-
tains sequences that represent a unique gene, as well as related information such as
the tissue types in which the gene has been expressed, and map location.
The UniGene clustering procedure is broken down into multiple steps, with

each stage adding less reliable data to the results of the proceeding stage. At each

14

stage, an essentially Nx N sequence comparison is performed to generate a weighted
graph where the vertices are sequences and the edges are weighted according to se-
quence similarity. Sequences with edges exceeding a threshold are merged into the
same cluster. A detailed description of the stages is given at
(http://www.ncbi.nlm.nih.gov/UniGene/build.html).

While the build procedure is public, the actual scripts and tools used are not
readily attainable nor are they flexible enough to be used in an environment outside
of NCBI. In addition, it appears as if the procedure is started from the beginning
each time the UniGene index is built. However, NCBI UniGene is probably the most
widely used gene index and is one of the standards to which our clustering procedure

will be compared.

2.2.2 TIGR Gene Index

The TIGR Human Gene Index [2] uses a strict assembly method to group
highly related sequences into clusters. The method disregards inconsistent matches
when forming clusters in favor of confidence based on perfect or near perfect sequence
overlaps. This design choice means that sequences possibly representing alternative
splice forms will not be considered for cluster membership. However, the benefit
is high confidence that the sequences in any given cluster are truely related. The
drawback is that underclustering will occur (i.e. to many clusters) and the number

of genes will be over estimated.

15

2.2.3 ICAtools

The ICAtools [21] are a set of programs that are designed for doing medium
scale cDNA sequence clustering. The program inputs files of cDNA sequence infor-
mation and produces an index file which links similar sequences together in clusters.
ICA is an acronym for Incremental Clustering Algorithm which describes the way
the program builds its index one sequence at a time. The incremental nature of the
program is very desirable since it eliminates the need to start from the beginning
when only a few new sequences need to be clustered. The program also uses the
notion of small, exact matches between sequences in a filtering step before doing a
comparison. The default size for the exact match length is six bases. Two sequences
are only compared if at least one of these short regions is in common between them.
This saves by avoiding sequence comparisons, a time-consuming operation, that have
no chance of being similar.

The ICAtools are freely available from the Internet

(http://www.hgmp.mrc.ac.uk/Registered/Option/icatools.html).

2.2.4 SANBI STACK
The STACK [20] clustering system aims to cluster ESTs and full-length cDNA
sequences into high-quality clusters. The difference between STACK and UniGene
is that STACK attempts to generate consensus sequences for each cluster using the
phrap [13] program. These consensus sequences can be used to detect alternative

transcripts of the same gene. Also, the developers claim that the STACK gene index

16

is generated more carefully and has a greater degree of error checking than UniGene.
The d2_cluster [8] program is used to form what they describe as a ”loose” cluster-
ing based on the total number and multiplicity of (possibly discontiguous) matching
6-base words, rather than sequence alignment. The goal of loosely clustering is to
preserve information about alternative splice forms. A post processing step, per-
formed by another program called craw [9], is used to identify the possible multiple
transcripts contained in a cluster. Their analysis [20] shows that their clustering is
between 13-16% less fragmented than UniGene clusters. Fragmentation occurs when
two distinct clusters exist that should actually be a single cluster.
The STACK tool is available freely for academic use from the Internet

(http://www.sanbi.ac.za/CODES).

17

CHAPTER 3
PROBLEM STATEMENT

Large-scale gene discovery projects require rapid and accurate clustering of
EST sequences for maximum efficiency [11]. Novelty rate estimates (i.e. the number
of clusters divided by the total number of ESTs sequenced) provided by clustering
are a key part of the feedback loop to a gene discovery sequencing pipeline. This
information is used to decide when to perform serial-subtractions, which have been
shown to dramatically increase novelty rates [5]. High overall novelty rate is the
primary goal of these projects. Furthermore, clustering results can provide valuable
insights into gene family relationships and clues to the identification of alternative
splicing sites.

These important uses of clustering make it imperative that the technique cho-
sen be both efficient and accurate. If done in a naive fashion, such as a NxN com-
parison, the problem is intractable for any reasonably sized data set. On current
PC hardware (e.g., 600MHz Pentium III), benchmarks have shown that a Smith-
Waterman [29] comparison of two EST sequences requires on average 5 milliseconds.
For a data set of 1 million ESTs, an O(n?) clustering would require approximately
80 years. However, typical data sets will be highly redundant and the number of

clusters will be much less than the number of sequences clustered. A better approach

18

would be an algorithm that scales proportionately to the number of clusters. Such
an algorithm would still be O(n?) for the worst case (i.e., every sequence is a cluster)
but would be much faster in practice. Clearly, there are significant opportunities to
utilize heuristics and other optimization techniques to speed this computation. How-
ever, careful evaluation is necessary to be confident that the approximated clustering
results match as closely as possible the solution that would have resulted from an
exhaustive approach.

There are several existing EST clustering solutions in use at different labs
around the world. Principle among these are NCBI UniGene [27], ICATools [21],
TIGR Human Gene Index [2], and SANBI STACK [20]. These tools have already
been discussed briefly in the previous chapter. While these tools are useful, they
are often not flexible enough to be generally useful to outside laboratories. There
is a need for a clustering program that combines the strengths of these programs,
but is flexible enough to be useful in a wide-array of applications and laboratory
environments. Furthermore, there is a need for a program that has higher performance
and is more scalable than the currently available tools. Parallel execution, distributing
both computation and memory, along with improved heuristics, are methods that
could be used to achieve this.

The task of this thesis is to describe the design and implementation of a high-
performance, accurate, and flexible clustering software application. The algorithms

employed have been chosen to optimize the trade-off between performance and accu-

19

racy. Of particular importance is the ability to handle large data sets (more than 1
million ESTs) with reasonable computation time on commodity PC hardware. Fur-
thermore, the application has been made flexible by using carefully chosen run-time
parameters. A novel goal of the software package is to be easily adaptable to the

clustering needs of other projects.

20

CHAPTER 4
APPROACH

The first section of this chapter presents the fundamental approach we have
taken to the clustering problem. The important characteristics of our solution are
discussed from a high-level standpoint. The second section of the chapter discusses
the optimization techniques we have employed in our solution.

The clustering application that implements our approach has evolved over the
course of four years and has been released to the public as three major versions. Each
successive release has built upon the previous and implemented more of the details
discussed in this chapter. When necessary, a note will be made of what version of the

application a particular feature was first incorporated.

4.1 Fundamentals
The definition of a cluster and the criteria for cluster membership are funda-
mental parameters that first need to be determined. NCBI UniGene [27], for example,
defines a cluster as containing all known genetic information for a given gene. This
includes alternative splice forms of a gene. Cluster membership is determined in a
multi-stage, graph-based approach by which clusters are formed based on sequence
similarity and known annotations. Essentially an NxN comparison is performed to

construct a graph where edges between sequences are weighted with the similarity

21

score. SANBI STACK [20] takes a similar approach, first generating a graph of se-
quence similarities. However, instead of using a traditional sequence alignment to
determine similarity, the criteria used is the multiplicity and number of 6 base words
in common between sequences. Both of these approaches are valid and useful. How-
ever, we take a different approach that avoids the O(n?) comparisons for typical data
sets. The advantage is substantially improved performance enabling the ability to run
effectively on commodity PC hardware. The risk is generating less accurate results,
although our analysis has shown this not to be the case.

Instead of pre-computing all sequence similarities before forming the clusters,
we take a more dynamic, incremental approach to the problem. Sequences are read
one at a time from an input file and compared against one representative sequence
from every existing cluster. These representative sequences are called primaries.
The non-primary sequences of a cluster are called secondaries. The sequence being
clustered is added to a cluster if it is found to be similar to the cluster’s primary. If
the sequence is similar to no existing clusters, it becomes the primary sequence of a
new cluster.

As with existing clustering applications, the computation becomes more com-
plex as the data sets clustered grow larger. However, for our approach the com-
putation scales proportionally to the number of clusters rather than the number of
sequences since only the cluster primaries are compared against. This produces a large

benefit because EST data sets typically have significant redundancy, meaning that

22

the number of clusters will be much lower than the number of sequences clustered.

4.1.1 Program Parameters
This section discusses the parameters and optional features of our approach
that are configurable by the user. These parameters afford the user a large degree
of flexibility when performing a clustering. Different option sets are appropriate for
obtaining different types of results. Additionally, the application can be executed
with different parameters several times for the same data set and the results can be

compared.

4.1.1.1 Incremental Clustering

A key feature that has been incorporated since the earliest version is the abil-
ity to perform incremental clustering. In this mode of operation, one or more files
containing the results of previous clusterings can be input to the application and
used when performing a new clustering. This is more efficient than reprocessing all
of the data from the beginning as do the graph-based approaches of UniGene [27],
STACK [20], and TIGR [2] gene index. Notably, ICAtools [21] provides similar incre-
mental clustering functionality but requires that each cluster be stored in a separate
file. In addition, incremental clustering allows other analytical processes, such as
tracking cluster growth over time. Our approach is to allow each file to contain more
than one cluster, simplifying the administrative tasks of running the application.

Previous output files of our clustering program can be directly input back into the

23

program when performing a new clustering. This feature can also be used as a crude
form of check-pointing by splitting a large data set up into pieces and clustering each

piece incrementally.

4.1.1.2 Similarity Criteria

The similarity criteria is specified by the user as N out of M, meaning that
at least one matching window of M bases with no more than M — N errors must be
present for two sequences to be considered similar. If the number of errors permitted is
relatively modest (95% identity), this criteria can be evaluated more quickly than the
optimal (semi-optimal) alignment methods of UniGene, ICAtools, and TIGR Gene
Index. Still, evaluating this criteria is a time consuming operation and should be
avoided as much as possible. This is the goal of our optimization schemes discussed
in section 4.2.

For estimating the number of genes represented in a data set, the N out of
M criteria should be chosen to allow for enough errors so that true similarities are
not missed while being rigorous enough that false similarities are not found. Un-
fortunately, there is no pre-determined method to select N and M and empirical
investigations by expert biologists are necessary to determine which values to use.
However, one may wish to use the clustering application for purposes other than gen-
erating gene indices. A ”looser” clustering (underclustering), similar to that produced
by STACK [20], can be performed by allowing more errors when one is looking for

evidence of alternative splice forms. Conversely, a ”tight” clustering overclustering)

24

can be performed by allowing fewer or no errors. This is useful when one wishes to
be highly confident that members of a cluster are related, with the consequence of
missing some true similarities. The strict alignment based clustering of TIGR’s gene

index strict alignment based clustering is an example of this mode of operation.

4.1.1.3 Repicking Primaries

A potential drawback of the cluster primary concept is that the chosen primary
may not be a good representative for the cluster as a whole. For homogeneous 3” EST
data, the best representative is most often the longest sequence in the cluster since
each sequence theoretically starts from the same position. However, by default our
algorithm uses the first discovered member of a cluster as the primary, disregarding
longer sequences that are added to the cluster later. This works well as long as the
input sequences are all approximately the same size or if they are pre-sorted into
descending order by size. Since this is usually not the case, an option is available
to repick the primary every time a sequence is added to the cluster. If the sequence
being added is longer than the existing primary, it becomes the new primary for the
cluster. In such a case, all of the existing secondaries are compared against the new
primary. Sequences not matching the new primary, called orphans, are made note of
in the application’s output. Over time, orphan sequences can be re-adopted as new
primaries are picked. At the end of clustering, any remaining orphans are intended

to be examined by a human.

25
4.1.1.4 Virtual Primaries

As a more extensive attempt to address the limitations of the cluster primary
concept, the latest version of the program contains an option to generate a virtual
primary for each cluster. Every time a sequence is added to a cluster, a check is
performed to see if the virtual primary can be extended. There are five possible
cases that are considered: an internal hit, front extension, tail extension, tail and
front extension, and no extension. An internal hit is when the added secondary is
completely contained in the virtual primary. An extension occurs when the added
secondary can make the virtual primary longer at its front, tail, or both. For this to
occur, there can be no non-matching regions (taking into account some error) of the
overlap between the virtual primary and secondary. If there are non-matching regions,
then the sequence is added to the cluster but the virtual primary is not changed. The
sequence should be inspected later to determine the cause of the non-consistent hit.
Such sequences may be good candidates for representing an alternative transcript of
the gene the cluster represents.

If the virtual primary parameter is enabled, all sequence comparisons are per-
formed against the virtual primary instead of the primary. However, the cluster
primary is also maintained and updated to reflect the longest sequence in the cluster

if the repick primary parameter is enabled.

26

4.1.1.5 Reverse Complement Checking

A rare error that occurs when doing EST sequencing is that the opposite strand
of a cDNA transcript is sequenced in the wrong direction. It is necessary to reverse
complement such a sequence before it can be compared to other sequences that were
sequenced in the correct orientation. To identify these errors, an optional parameter
was added to the second version of the program that checks the reverse compliment
of an input sequence if no match to a cluster primary is found in its original form.

An additional important use of this feature is for clustering 5> EST and full-
length ¢cDNA sequences along with 3> ESTs. These types of sequences must be reverse
complimented before any overlaps with 3° EST sequences can be ruled out.

The performance implication of this feature is that the computation time may
double, since the cluster space is potentially searched twice. In practice, the penalty

is not this severe since a reverse compliment match is a relatively rare occurrence.

4.1.1.6 Extended Search

A parameter that was added in the second version of our clustering application
is the ability to do an extended search of the cluster primaries for each sequence being
clustered. By default, a sequence being clustered is greedily added to the first cluster
primary that it is found to match. Enabling this parameters makes the search of
the cluster primaries exhaustive. If any matches are found, the sequence is added to

the cluster with the best matching cluster primary and all other matches are noted

27

in an output file. This feature can be useful for identifying potential alternative
transcripts. Two separate clusters that are linked together by multiple sequences
have a high potential of either being alternative transcripts of the same gene or
members of the same gene family. Alternatively, the linking sequences could be
chimeric—“false” sequences containing partial regions of separate transcripts caused
by library construction errors. Human inspection of such cases is necessary to resolve
any ambiguity.

The number of sequence comparisons required when performing an extended
search is potentially much greater than performing the greedy search. However, the
global hash table discussed in section 4.2.2 is effective in filtering the search space by
eliminating primaries that can not possibly meet the similarity criteria. This lessens

the overhead substantially.

4.1.2 Organization of Outputs

The main output of applying our clustering approach to a set of sequences is
a file containing the identified clusters. This file contains both the sequence data and
cluster hierarchy. Depending on the parameters chosen, other files are also output.
There is a “reject” file that contains sequences that have been identified to be too
low quality to cluster. There is an “orphan” file that lists orphaned sequences if the
repick primary option is enabled. The “hits” file lists all of the cluster primaries hit
for each sequence clustered if the extended search option has been enabled. Finally,

there is an output file written for each cluster file input into the application when

28

performing an incremental clustering.

4.2 Optimization

A unique aspect of our application is its adaptability to the computing hard-
ware that is being used to run it. A drawback of the Nx/N comparison methods
employed by STACK and UniGene is that high-end computers are required for run-
ning them. The d2_cluster [8] application used by STACK was originally designed
to run on a MasPar super-computer, and has recently been ported to other platforms
including SGI Origin2000 and Linux PC clusters. They report that a 126 CPU SGI
Origin2000 is used for building the STACK gene indices [20]. Our hash optimiza-
tion schemes allow the user to intelligently balance the amount of memory used and
computation time required by configuring run-time parameters appropriately. The
program is able to run efficiently on commodity hardware with modest amounts of
memory. In addition, multiple processors can be taken advantage of to distribute the

memory and computational requirements of clustering if required.

4.2.1 Hashing
A key optimization of our sequence comparison functions is to initially search
for short, exact matches by looking for hashes in common between the input sequence
and the cluster primaries. A hash is an integer that uniquely represents a string of
bases. The length of the string of bases to use, (, is specifiable by the user at run-time.
For example, the length ¢ = 8 string of bases { GCCACTTG} may be represented by

the integer 48406. A sequence is hashed by generating a unique integer for every length

29

¢ window of the sequence. The hashing optimization is based on the principle that it is
faster to compare integers than to perform a string comparison. Integer comparisons
are primitive operations implemented in hardware for every modern CPU, while string
comparisons are usually implemented as library calls. In addition, hashes only need
to be generated once for each sequence but are used many times. This amortizes
the cost of generating the hashes over the program’s execution. The trade-off is that
memory usage increases because the hash lists for each cluster primary need to be
stored in memory. Memory usage will scale proportional to the total number of bases
contained in the cluster primaries, since a hash needs to be stored for each base
position.

When performing a sequence comparison, both sequences are first hashed.
Next, identical hashes between the two sequences are located. The base regions of
the two sequences corresponding to the matching hash are a potential seed for a
longer match, hopefully meeting the N out of M similarity criteria set by the user.
At this point, a more exhaustive search is performed, taking into account errors. If
the similarity criteria is not met in this comparison, the procedure moves onto the
next hash in common between the two sequences and examines it. This procedure
continues until a match is found or all identical hashes have been examined and

discarded.

30

4.2.2 Global Hash Table

The GHT uses hashes to optimize the program at a higher level by filtering
the entire search space into a subset of high-potential candidate primaries. The table
contains an entry for each possible hash value. At each entry, there is a list of clusters
that contain at least one occurrence of the entry’s associated hash. When a sequence
is clustered, it is hashed in the same way as described earlier. However, instead of
comparing it is hashes against every primary, the GHT is traversed. Only primaries
that are found by inspecting the GHT are examined. Primaries not having any hashes
in common with the sequence being clustered are not examined.

A further refinement of the GHT concept is to keep a touch count for each
primary in the table. Each time the primary is "touched”, meaning it has a hash in
common with the sequence being clustered, this counter is incremented. A comparison
is only performed if the touch count is incremented to become greater than a threshold
that is set by the user at run-time. If the threshold is chosen too high, then some
primaries meeting the user’s N out of M similarity criteria may be missed. Similarly, if
the touch count is chosen too low, more comparisons than necessary will be performed

and performance may decrease dramatically.

4.2.3 Parallel Execution
The latest version of the clustering program has been parallelized to split
up the computational and memory requirements across several computers (compute

nodes). The main reason for doing this is so the program can scale to larger problem

31

sizes without being constrained by the memory limitations of a single computer. The
increased performance is an added benefit.

In this mode of execution, each cluster is stored on exactly one compute node.
A given sequence is read in from the input file and processed in parallel on each
compute node. This results in a parallel search of the cluster space. Once each node
has finished its search, each node’s best match is collectively communicated to all
compute nodes. The node with the best match stores the sequence in its memory
space. If no match is found on any of the compute nodes, the input sequence becomes
a new cluster and is assigned to one of the compute nodes. Clusters are balanced
evenly across the compute nodes.

If the extended search option is enabled, an additional communication is per-
formed to build a list of all matches meeting the user’s similarity criteria. This list
is gathered to the master compute node (the node writing the output files) and is

written to a file.

32

CHAPTER 5
IMPLEMENTATION

This chapter presents implementation details of the three generations of the
clustering applications that have been developed to date. The first version of the
program, TLcluster 1.0 was implemented by Professor Thomas Casavant in the Fall
of 1998. This version was revised and expanded to produce the two subsequent major
releases of the application, UIcluster 2.0 and UIcluster 3.0. In this chapter,

UIcluster will be used to collectively refer to all three of the implementations.

5.1 Common Implementation Details

Common characteristics of all versions of UIcluster include the high-level
solution structure, the hashing algorithm, and the the sequence comparison func-
tions. These topics will be discussed in this section and further elaborated on in the
subsequent sections that specifically deal with each implementation version.

An additional implementation commonality is that each version has been writ-
ten in the C programming language [18] and is intended to be run using a UNIX-
based [32] [30] operating system. Appendix A lists the complete source code of the
latest release (roughly 5, 500 lines). Portions of this code will be referred to throughout
this chapter. The UNIX-derived Linux operating system has been used for develop-

ment and testing of each version. However, an effort has been made to make the

33

applications as UNIX platform independent as possible.

5.1.1 High Level Solution Structure

The basic flow of data is the same for all versions of UIcluster and is shown
in figure 5.1. Two data sources are input into the application. The first is a file (or
files) containing clusters formed by previous runs of the program. These clusters are
only input when performing an incremental clustering. The second data source is a
file containing the sequences to be clustered. This file is formatted in the commonly
used multiple FastA file format [12]. Figure 2.6 is an example of a FastA formatted
sequence. The first line of a FastA sequence always begins with a “greater than” sign
and is followed by the sequence name and other information. The sequence is listed

after this line, and includes all lines up until the next FastA sequence record.

Existing New
Clusters Seqguences

N\

Augmented New Rejected Other Outputs
Existing Clusters Clusters Seqguences (Orphans, Hits, etfc.)

Figure 5.1: High Level Data Flow

34

When performing an incremental clustering, the clusters that are input into
the program are processed and loaded into memory before any new sequences are
clustered. New sequences are compared against these clusters in addition to any
new clusters that are formed by the new sequences themselves. If a sequence being
clustered is found to belong to one of the previously existing clusters, it becomes a
member of that cluster.

Once the program has finished running, the clusters that have been identified
are output to file. One file is output that contains all of the new clusters that were
formed from clustering the input sequences. The sequences in this file were not able
to be added to the previously existing clusters that were input into the application.
If there were files input to the program that contained clusters to be used for incre-
mental clustering, a new file is output for each of the files containing the modified
clusters (i.e., possibly having sequences from the input set added to them). This
behavior is very useful for tracking the growth of existing clusters of interest. Ad-
ditionally, input sequences not meeting the user’s minimum sequence length criteria
(i.e., rejected sequences) are output to the reject file. Multiple other files are also
output depending on which options the user has chosen to enable (e.g., a file listing
all of the primaries matched, or “hit”, for each input sequence when the extended
search option is enabled).

In addition to the data-flow, the same basic flow of execution is used for each

implementation. This flow is shown in figure 5.2. Step 4 encompasses the bulk

35

of the program’s execution. Sequences are read one at a time from the input file
and clustered. If a sequence is determined to be too short based on a user-defined
parameter (specified as the shortest number of consecutive valid bases allowable), it
is rejected and not clustered. Rejected sequences are output to the reject file for

later inspection.

1) Parse command-line
2) Allocate memory and initialize data structures
3) Read existing clusters into memory when performing an
incremental clustering
4) While there are unprocessed sequences in the input file
4a) Read a sequence from the input file
4b) Determine if the sequence is a reject
4c) If the sequence is not a reject, cluster the sequence
5) Write the clusters to the output file(s)

Figure 5.2: Basic Flow of Execution

If a sequence is not rejected, it is clustered in step 4c. This procedure is
shown in more detail in figure 5.3. First, the sequence is "hashed”, as described
in section 5.1.3. These hashes are then used to search for candidate clusters that
have high probability of matching the input sequence, based on the similarity criteria
being used. Each candidate cluster’s primary is compared to the input sequence to
determine whether or not the similarity criteria is met. This criteria is specified by
the user at run-time as N of M bases, meaning that at least one M length window
containing no more than M — N errors must exist between two sequences for them
to be considered similar.

The two functions that are used for this comparison are described in the follow-

36

Ja

Hash the input sequence
2) Identify candidate primaries by searching for hash hits
2a) When a candidate is identified, call ScoreMatch ()
2b) If score < threshold
i) Move on to next candidate primary
Else
i) Call ExtendMatch ()
ii) Add the input sequence to the candidate cluster
iii) Terminate the search and move on to next
input sequence
3) If the input sequence is not added to any cluster, it becomes the
primary of a new cluster

Figure 5.3: Expanded Clustering Control Flow (line 4c from figure 5.2)

ing section. By default, the search of the candidate clusters is greedy. The sequence
being clustered is added to the first cluster that is found to be similar. The extended
search feature, first implemented in UIcluster 2.0 can be enabled to search the
entire space of candidate clusters for each sequence that is input. In this mode of
operation, an additional file is output that contains a list of matching clusters for
each sequence. However, the sequence is only added to the cluster that it matches

best (i.e., the longest matching subsequence measured in units of bases).

5.1.2 Comparing Sequences
Comparing sequences is the fundamental operation used by UIcluster to clus-
ter sequences. Before the process used for comparing sequences is described, it is
important to note that DNA is largely repetitive in nature. Before clustering is per-
formed, it is important to mask out repetitive regions so that false similarities are not
identified. Sequence similarity should only be based on base regions that are unique

to a particular sequence. Another related aspect of DNA that needs to be consid-

37

ered is low-complexity regions such poly-A tails and simple repeats. These regions
contain little information and should also not be considered as evidence of similarity
when comparing sequences. The input to UIcluster should always be masked for
low-complexity and repetitive regions using a program such as RepeatMasker [28]. If
such preprocessing is not performed, overclustering (i.e. merging clusters that should
be disjoint) will occur.

Our sequence comparison procedure is implemented as a two-phased operation.
First, the ScoreMatch function is called to evaluate if the similarity criteria specified
by the user has been met. If it is determined that there is a match, ExtendMatch
is called to extend the minimal subsequence match that was found by ScoreMatch
to its longest extent while retaining the user’s criteria for the maximum number of
allowable errors. Calls to ScoreMatch, while much less complex than a score-based
sequence comparison such as the Smith-Waterman algorithm [29], will still become
the computation’s bottleneck if it is called too often. Avoiding unnecessary calls to
this sequence comparison function is the goal of our hashing optimization discussed in
section 5.1.3. The next two subsections will discuss the ScoreMatch and ExtendMatch
functions specifically. The source code implementing these functions is located in

appendix section A.2.3.

5.1.2.1 ScoreMatch

The ScoreMatch function determines if two sequences share a window of N

out of M bases in common. Three error modes need to be taken into account when

38

doing the comparison: insertions, deletions, and mismatches. The function recursively
descends an alignment until either a region of N out of M bases is found or more
than M — N errors are found in every possible edit path.

Figure 5.4 shows an example of comparing two sequences with ScoreMatch.
For this example, the match criteria is N = 6 and M = 7 (Note: the tree is not
truncated where the M — N error limit has been exceeded so that all cases can be
shown and discussed). When an error is encountered there are three cases that must
be checked. The left branch corresponds to a mismatch error, the middle branch cor-
responds to a deleted base in the first sequence (or inserted base in second sequence),
and the right branch corresponds to an inserted base in the first sequence (or deleted
base in the second sequence). In this example, the first three bases match exactly.
When the first difference is encountered at position four, ScoreMatch first checks for
a mismatch error along the left branch. To do this, it calls itself advancing to the
next position in each sequence. The fifth positions are found to match, but the sixth
positions are different. Again, ScoreMatch calls itself first checking for a mismatch
error. Another mismatch error is found and this branch stops because the end of both
sequences is reached. The recursion falls back one level and checks for a deletion in
the first sequence. This fails and the end of the second sequence is reached. Finally,
the right branch is taken to check for an insertion in the first sequence. This succeeds,
but the end of the first sequence is reached before a score of 6 is found. The recursion

then falls back to the fourth position and checks for a deletion in the first sequence.

39

This corresponds to the middle tree in the figure. Again, no matches with a score of
at least 6 are found. The recursion again falls back to the fourth position and checks
for an insertion in the first sequence, taking the right-most branch. This search is
successful, finding a match of 6/7, so ScoreMatch returns to the calling function with
the score — 6. If no acceptable match had been found, ScoreMatch returns the score
of the best path checked. Had a match of score 6 been found earlier (e.g. in the left

branch of base position 4) the function would have returned immediately.

ACGATTA

ACGTTAC

A=A

c=c

G=
TTT ‘/A'i =T
T1=A TI=A A=A T=T T
o | |
Al=C T!=C A-A TI=C T!=A A=A
4/7 4/7 5/7 a/7 4/7 6/7

Figure 5.4: Example of ScoreMatch Execution

ScoreMatch is potentially very costly in terms of execution time, but is made

40

at least marginally efficient because the number of errors is bounded, allowing whole
sub-trees in the search space to be eliminated. The key assumption is that the number
of errors permitted will be relatively small (e.g. 95% identity for a given region). If
too many errors are permitted, the search tree fans out rapidly in both the depth and

width dimensions and performance suffers dramatically.

5.1.2.2 ExtendMatch

Once a match has been found by ScoreMatch, the ExtendMatch function is
called to lengthen it. The approach taken is to append regions of M bases until the
end of one of the sequences is reached or until a region shorter than M is can be
appended. The regions are appended by repeatedly calling ScoreMatch. For each
appended region, the users /N out of M similarity criteria must hold. The extension

stops once this criteria fails to be met for an appended region.

5.1.3 Hashing
All implementations of UIcluster use hashing techniques of various complex-
ities to filter the search space and accelerate sequence comparisons. A hash is simply
an integer that uniquely represents a short string of characters. In the case of DNA,
the possible characters are from the alphabet {A,C, G, T}, which represent the four
bases. Any sized alphabet can be used, although the maximum string length used to
generate a hash may be severely limited for larger alphabets for practical purposes.

The general equation used to generate a hash is given by equation 5.1.

41

1

(K" x ¢) (5.1)

¢
H =

=

In this equation H is the generated hash value, (is the string length, K is
the alphabet size, and ¢ is the integer value assigned to the letter at position ¢ in the
string being hashed. To generate hashes for DNA sequences, the alphabet size K is
four since there are four DNA bases. Equation 5.2 gives the values assigned to each
base. As a practical matter, the string length ¢ that can be used to generate hashes
is limited by K, and the word size of the computer. For the DNA alphabet, each base
requires 2-bits to represent it ([log, K| where K = 4). Thus, the maximum value of

¢ using a single word on a 32-bit machine is 16.

0 ifseqli] = A
1 ifseqfi] = C
5= (52)
2 ifseqli] = G
3 ifseqli] =T

\

When a sequence is hashed, equation 5.1 is used on every (length substring.
Figure 5.5 shows the first six hashes generated for a sample sequence. Each of these
hashes is indexed by the left-most character in the substring being hashed. There are
no hashes generated for the last (— 1 bases in a sequence. Additionally, substrings
with X’s or N’s in them cannot be hashed. This means that for every X or N, there
are at least (substrings that cannot be hashed. Recall, X denotes a masked base

position (due to repetitive or low complexity sequence regions) and N denotes an

42

ambiguous base position (due to uncertainty during sequencing).

Sequence: GCCACTTGGCGTTTTG

Hashes:
Hash 1: GCCACTTG = 48406
Hash 2: CCACTTGG = 44869
Hash 3: CACTTGGC = 27601
Hash 4: ACTTGGCG = 39668

Hash 5: CTTGGCGT = 59069
...etc.

Figure 5.5: Example of Hashing a Sequence

The calculation to generate the hashes for a sequence only needs to be per-
formed once, but the hashes are accessed many times during the programs execution.
This amortizes the computational overhead of generating the hashes. The actual C

code that hashes a sequence is listed in section A.2.2 in function hashSeq.

5.2 TLcluster (Version 1)

The first implementation of the clustering program was TLcluster. The main
features of this program were incremental clustering, repicking of primaries, and ac-
celeration of sequence comparisons with per-primary sorted hash lists. The data
structures used to represent a cluster are shown in figure 5.6. A cluster is comprised
of one primary structure and zero or more secondary structures. The secondary el-

ements are stored in a linked-list attached to the nextS_p pointer of the primary

43

structure. If the cluster is a singleton (i.e. contains no secondaries), this pointer has
the value of NULL. The secondaries are chained together using the nextS_p pointer of
the secondary structure. The last secondary in the linked list has this pointer set to

the value NULL.

typedef struct PRIMARY ({

char *seqgName;

char *sequence;

int *hashPrefix;

int *hashPrefixIndex;
struct PRIMARY *nextP p;
secondary t *nextS p;

} primary t;

typedef struct SECONDARY {

char *seqgName;
char *sequence;
double score;

int iP;

int ic;

int matchLength;

struct SECONDARY *nextS p;
} secondary t;

Figure 5.6: Primary and Secondary Data Structures

The clusters are stored in memory as a linked-list of primaries. The nextP_p
pointer of the primary structure performs the linkage. When clustering a new se-
quence, TLcluster starts at the beginning of this list and inspects every primary in
order. The new sequence is added as a secondary to the first primary that it matches.
If the repick primary option is enabled and the new sequence is longer than the clus-
ter’s existing primary, it becomes the new primary for the cluster. The cluster’s old

primary then becomes a secondary member of the cluster.

44

When inspecting a primary, the hashes stored in the sorted hashPrefix array
of the primary data structure are used to determine if the sequence being clustered
has any potential of being similar to the primary sequence. The hashes of the se-
quence being clustered are compared against the hashes of the primary sequence, and
identical hash values are identified. When a matching hash is found, the indices of
the corresponding hashes (i.e., the base index of the hash in the primary and the base
index of the hash in the sequence being clustered) is passed to the ScoreMatch func-
tion. If this function determines that there is at least an N of M base match between
the sequences, the ExtendMatch function is called and the sequence is added to the
primary’s list of secondaries (or is repicked as the new primary). The statistics of
the match identified by the sequence comparison functions is stored in the secondary
structure in the score, iP, iC, matchLen fields. These correspond to the identity
score of the match (e.g., a match of 95/100 bases corresponds to 95% identity), the
start base index of the match in the primary, the start base index of the match in the
secondary, and the length of the match.

The hashes of a primary sequence are stored in the hashPrefix array in nu-
merically ascending order. The hashes of the sequence being clustered are also stored
in ascending order. Thus, to search for identical hashes between two sequences, these
arrays only need to be linearly scanned once. Each array has an index counter as-
sociated with it that starts at 0 and is incremented until the last hash is inspected.

When searching for identical hashes, if the hash at the current index of the primary’s

45

hash array is less than the hash at the current index of the new sequence’s hash array,
then the primary’s index counter is advanced. Alternatively, if hash at the current
index of the primary’s hash array is greater than the hash at the current index of
the new sequence’s hash array, then the new sequence’s index counter is advanced. If
the hashes being examined are identical for both the primary and the sequence being
examined, then ScoreMatch is called. The original implementation of TLcluster did
not store the hashes in sorted order. The entire primary array was inspected for each
hash of the sequence being clustered. The last version of TLcluster had an order of
magnitude in performance as a result of this sorting.

The length of the hash probe used is an important parameter that can signif-
icantly affect performance. Longer hash lengths will result in better performance for
a given similarity criteria. It must also be chosen carefully so that potential similar-
ities are not missed. The formula for calculating the optimal hash size is shown in
equation 5.3. The rational for this equation is that for any chosen similarity criteria
where M is the window size and M — N is the number of permitted errors, there
is at least one contiguous, error-free region of ¢ bases. Thus, the comparison of two
sequences can be accelerated by first searching for short exact matches of length ¢
bases between the pair (i.e. searching for identical hashes). If such a match is found,
a more exhaustive search that permits errors can be performed. If no length ¢ hashes
are identified, then the two sequences cannot possibly contain a window of M bases

with N bases in common.

46

C= {M_LNHJ (5-3)

5.3 Ulcluster 2.0

TLcluster was found to work well for moderately sized data sets (30,000 or
fewer ESTs), however as the Rat EST gene discovery data sets grew, more perfor-
mance was required. To accomplish this, a table was implemented in the next version
of our clustering program, renamed UIcluster 2.0, that stores the set of cluster
primaries containing any given hash value. Although this table, referred to as the
Global Hash Table, increases memory requirements significantly (4¢ lists of varying
lengths proportional to the number of primaries) , it eliminates the need to sequen-
tially traverse the list of primaries for each sequence clustered. Only primaries that
contain hashes in common with the sequence being clustered are examined as candi-
dates. Thus, performance is increased significantly. In addition to this optimization,
two features were added that enable more thorough clustering — checking the reverse
complement of a sequence, and performing an extended search of all primaries for each
sequence being clustered. Both of these are options and can be enabled independently

by the user.

5.3.1 Global Hash Table
A structural view of the global hash table (GHT) is shown in figure 5.7. In
general, this table contains 4¢ top level entries, each entry being a memory pointer

to a linked list of cluster primaries. Only primaries discovered by indexing into this

47

table and traversing the corresponding linked list are considered as candidates.

|@||||||E|
[]

Prima;
Sequence Name
Sequence
Hashes
—> Hash Indexes

Touch Count

Linked list of
clusters that
contain at least 1
hash with value 2.

L, °

1 »

Pointer To
Secondaries

o ieei e

Figure 5.7: Global Hash Table

In the figure, there are 4% entries corresponding to a hash window size of (= 8.
On a 32-bit machine, this equates to an empty table size of 256 kilobytes (4® entries
of 4 bytes each). In order to keep accesses to this table fast, this table is directly
accessed by hash value. This is an important point since this table is accessed so
frequently. Any sort of traditional hash table implementation would require extra
calculations and have the potential for hash collisions. The drawback is memory
usage of the table scales by 4¢ for DNA sequences (alphabet size = 4). The memory
required for the table when ¢ = 16 is 16 gigabytes. Thus, some compromises need
to be made when choosing the value of (to use. The shorter value chosen will be

referred to as ¢’. Some empirical experimentation is necessary to determine what ¢’

48

is most effective for a given data set and for the available memory.

Since it is typically not possible to use the optimal hash size for a given N out
of M similarity criteria, a thresholding scheme was developed to lessen the trade-off
in selectivity of candidates. For each sequence clustered, the GHT is traversed to
identify candidate primaries that contain at least A length ¢’ hashes in common with
the sequence. Instead of looking for only one (length hash in common as was the
case in TLcluster, multiple shorter hashes are searched for. Equation 5.4 can be
used as a guide when choosing the value of A to use for the optimal ¢ and chosen (.
The value of ' to use is a parameter defined by the user at run-time for flexibility in

memory usage and performance.

A=(M-N+1)(—) (5.4)

An integer counter was added to the primary data structure to count the
number of times a given primary is encountered, or touched while traversing the
GHT for a given sequence. Only if a primary is touched more than A times is a
comparison performed against the sequence being clustered. This counter is reset to
zero after every sequence processed.

Intuitively, the thresholding scheme lowers the probability that ScoreMatch
will be called for a primary that doesn’t match the sequence being clustered. Similarly,
the GHT clearly has the potential to eliminate many of the failed calls to ScoreMatch

in TLcluster. In practice, the GHT optimization has been highly effective — usually

49

improving performance by factor of at least 30 over TLcluster.

5.3.2 Extended Search

Due to the use of TLcluster in our sequence processing pipelines, it was de-
termined that there are certain situations where checking all of the primaries for each
sequence clustered is desirable. Directly modifying TLcluster to do this would have
been relatively straight-forward, however performance would have degraded signifi-
cantly. Instead of stopping on average half way through the traversal of the primary
linked list for sequences that become secondaries, the remainder of the list would need
to be traversed.

This property was accomplished in practice by the use of the GHT. Performance
is only moderately increased because the search space is filtered into a relatively short

list of candidate primaries for each sequence clustered.

5.3.3 Reverse Complement Checking

A common error in sequencing DNA causes the wrong strand to be sequenced
in the opposite direction. To detect this, a feature was added to check the reverse
complement of a sequence being clustered in addition to checking it in its original
form. If the extended search option is enabled, the reverse complement of a sequence
is always checked for similarity to the cluster primaries. Otherwise, it is only checked
for sequences where no similarity was found in the sequence’s original orientation.

To generate the reverse compliment, the character string representing the se-

quence being clustered is copied into a working buffer. This buffer is then reversed

50

in-place by successively swapping bases. After reversal, the sequence string is com-
plemented according to DNA pairing rules (i.e {A — T}, {T — A},{G —» C},{C —
G}). The C code that implements these steps is found in the function revComp listed
in appendix section A.2.9. The resulting sequence string is then hashed and processed

in exactly the same way as the original sequence.

5.3.4 Additional Minor Changes

Two additional changes are worth mentioning. The Linux operating system, or
rather the library that implements the malloc function [30], has limits on the number
of memory blocks that can be allocated. This caused UIcluster to crash for large
data sets without explanation. Considerable time was spent debugging the program
in order to identify the cause of the crash. Once the malloc limitation was discovered,
custom memory allocation routines were implemented as a solution. These functions
are listed in appendix section A.2.6. The vast majority of the calls to malloc were
identified to be of a limited number of sizes. Indeed, this is because entries in the
GHT are all of the same size and are allocated separately. Other data structures in
the application have this property as well. The memory allocation functions operate
by allocating a large chunk of memory that is a multiple of the size in bytes of a
given data structure. This, along with some bookkeeping, enables many structures
to be allocated with a single call to malloc. This solved the crashing problem and
was instructive as to the issues that arise when working with large data sets.

The second change was a result of problems encountered when clustering long

51

sequences. TLcluster was implemented to use a crude “bubble sort” algorithm for
sorting hash arrays. While this was sufficient for the average EST sequence length
(400-800bp), this became a bottleneck for longer sequences such as full-length cDNAs
and genomic contigs. The quicksort algorithm was implemented to work around this
problem. The algorithm used was adapted from [22] to also carry along the hash

index array. The source code for this routine is listed in appendix section A.2.8.

5.4 Ulcluster 3.0
The latest version of UIcluster improves on its predecessor by adding parallel
execution capability and the notion of virtual primaries. These features are discussed

in the following sections.

5.4.1 Parallel Execution

The parallel execution functionality is implemented using the MPICH MPI li-
brary [19]. The number of UNIX processes to use is a parameter specified by the user
at run-time. If one process is chosen, the program operates identically to UIcluster
2.0 if the virtual primary generation option is not enabled (discussed in the next
section). If more than one process is chosen, the program’s execution and memory
requirements are spread across multiple UNIX processes and processors. If the com-
puting hardware being used is an SMP machine, each of these processes can use a
separate CPU. Alternatively, if the program is operating in a clustered environment,
such as a Beowulf class system [4], the processes are spread across multiple distributed

computers.

52

The only change to the clustering algorithm is a series of collective communica-
tions between processes after the GHT has been searched and the matching primaries
identified. The list of matching primaries for each node is sorted by score and the best
match is communicated to all other nodes. If no match is found, then the sequence
being clustered becomes the primary of a new cluster and is assigned to a single pro-
cess, determined by the process ID equal to the modulus of the cluster ID and the
number of processes. In this way, the clusters are evenly spread across processes and
the memory requirements are reduced accordingly (assuming each process also gets
assigned approximately the same number of secondaries).

If a similarity to a cluster is determined, the process with the best score is

determined and the sequence is added to the best matched cluster on that process.

5.4.2 Virtual Primaries

The virtual primary generation feature of the latest version has been imple-
mented using the bl2seq [31] program to identify the extent of the overlap between
the current virtual primary of a cluster and the sequence being added to the clus-
ter. bl2seq uses the BLAST [3] algorithm to align two sequences and assign a score
to each of the matching regions identified. It is, however, considerably slower than
the sequence comparison functions in UIcluster. The reason for using it instead
of the ScoreMatch and ExtendMatch functions is two-fold. First, it is more accu-
rate in determining the length of a match. It reports the end base of a match for

both sequences being compared, instead of a single match length parameter as does

23

ScoreMatch. This is important when aligning a new sequence to a virtual primary
to see if it can be extended. ExtendMatch, because it uses a heuristic for speed
(repeatedly calling ScoreMatch), and sometimes misses some bases at the end of a
match. The second reason for using bl2seq is to identify cases where there are mul-
tiple matching regions. ScoreMatch and ExtendMatch only identify one match. This
is useful for identifying sequences possibly representing alternative splice forms of a
gene. Future versions of UIcluster may implement the necessary functionality of
bl2seq internally. It was used for the purpose of speeding development of the virtual
primary generation feature.

When a sequence is added to a cluster, the bl2seq function is called to compare
the new sequence to the cluster’s virtual primary. The source code to call bl12seq
and parse the results is listed in appendix section A.2.10. A list of matches sorted
by score is returned to the caller. Each match in the list contains the start base in
the virtual primary, the start base in the new sequence, the end base in the virtual
primary, the end base in the new sequence, the score of the match (match length
in the virtual primary), and the direction of the match. This information is then
used by the addSecondary function (listed in appendix section A.2.2) to determine
if the virtual primary can be extended by the new sequence. Five cases are detected:
bases can be added to the front of the virtual primary, bases can be added at the
end of the virtual primary, bases can be added at both the front and end of the

virtual primary, the new sequence is entirely contained in the virtual primary, and

54

the new sequence partially hits the virtual primary but contains significant regions
that are inconsistent with it. If an extension is possible, the added bases from the
new sequence are copied into the virtual primary buffer. If bases are added to the
beginning, the existing virtual primary is shifted to the right in the buffer. The
resulting sequence is then hashed and added to the GHT. The hashes of the previous
virtual primary are removed before this is done.

When the virtual primary buffer is first created, twice as much memory than
necessary is allocated. When an extension would cause this buffer to be exceeded, the
buffer is doubled again with a call to the realloc function [30]. By allocating more
space than necessary, the number of realloc calls is reduced, thus reducing memory
fragmentation.

The latest release of UIcluster is the first version that incorporates the virtual
primary generation feature. Over time, the usefulness of this feature will be evaluated
more extensively than has been done to date. If it is determined to be useful, its

performance will be improved in future versions of the clustering application.

5.5 Running Ulcluster 3.0
This section is intended to be instructive in compiling and using the latest
version of UIcluster. The application is available in source code form from our
project web site (http://genome.uiowa.edu). The previous releases of the applica-
tion, TLcluster 1.0 and UIcluster 2.0, and accompanying documentation are also

available from this site. The procedures for running UIcluster 2.0 are essentially

%)

identical to what is presented in this section with the exception of the virtual primary

and parallel execution features.

5.5.1 Compiling

Once the source code to the program has been downloaded from the Internet,
it needs to be compiled into an executable program before it can be used. To do
this, the source distribution must be uncompressed, configured, and compiled with
a C compiler. The user performs all of these steps entering commands at a UNIX
command-line.

An MPI library must be installed on the UNIX computer being used before
UIcluster 3.0 can be compiled. The program was developed using the freely avail-
able MPICH MPI library. This library is available for the UNIX platforms (Linux,
Sun, HP) UIcluster supports. Instructions for obtaining and compiling MPICH are
available on the Internet (http://www-unix.mcs.anl.gov/mpi/mpich). Other MPI
implementations should work, however they have not been thoroughly tested. The
compilation of UIcluster 2.0 does not require an MPI library. If the user does
not need the parallel execution and virtual primary generation features of UIcluster
3.0, then version 2.0 should be used. Other than this requirement, the procedure for
compiling the two versions is the same.

The UNIX commands necessary to build the Ulcluster executable are given
in figure 5.8. The first step is to decompress and un-archive the distribution by

executing the first two commands in the figure at a UNIX shell prompt. The next

o6

step is move into the main source directory by using the third command. The fourth
step configures the files necessary to build the application. Finally, typing “make”
builds the executable. After a successful build, the executable will be a file called
uicluster. It may be copied to a location in the user’s path so it can be executed

from anywhere on the system.

1) gzip -d UIcluster-3.0.tar.gz
2) tar -xvf UlIcluster-3.0.tar
3) cd UlIcluster-3.0

4) ./configure

5) make

Figure 5.8: UNIX Commands for Compiling UIcluster

5.5.2 Command Line Options and Usage

Figure 5.9 shows the command line options input into the program. The
meaning of most of these has already been discussed in this chapter, however the
names may be slightly different and/or abbreviated. With the exception of the input
sequence file, all parameters are optional for the user to specify. The default value for
each option is shown in the right column of the figure. Both short and long option
names are available for each parameter, shown in the left column of the figure.

The --preClus option takes as its argument a file containing a list of files,
one per line, of previous clustering results to use for incremental clustering. The

—--rejectCrit is specified as the minimum number of bases required to cluster an in-

o7

UIcluster 3.0.4 Usage: uicluster [options] input fasta file
Valid Options: (defaults are in parenthesis)

-F, —--preClus specifies the preClustered infile (none)
-R, --rejCrit specifies the rejection criteria (100 bases)
-H, --hashSize specifies the hash size (8 bases)
-S, —--startSkip specifies the start skip (18 bases)
-s, —-endSkip specifies the end skip (0 bases)
-M, --matchLen specifies the length to match (40 bases)
-E, —--errlLimit specifies the error limit (2 bases)
-C, —--maskChar specifies the mask character ("X")
-h, —--hitThresh specifies the hit threshold (16)
-P, —--wrongPen specifies the wrong penalty (1)
-p, —-gapPen specifies the gap penalty (1)
--repick repick cluster primaries (off)
-—tryRevC check reverse compliment (off)
--keepGoing perform exhaustive search (off)
--vPrimary generate virtual primary (off)
--help view this message

Figure 5.9: UIcluster 3.0 Command-line Interface

put sequence. The —-hashSize specifies the value of (' to use. ——startSkip specifies
the number of bases to disregard at the beginning of a sequence. This is useful when
there is a poly-T tail still present in 3’ EST data. The --endSkip similarly specifies
the number of bases to skip at the end of a sequence. The --matchLen specifies
match window, M, to use and --errorLimit specifies the number of errors to allow,
M — N. The --maskChar parameter designates the character that will be used to
identify low-complexity and ambiguous regions. The --wrongPen and --gapPen des-
ignate penalties to use for gaps (i.e. inserted and deleted bases) and mismatched bases
in the ScoreMatch function. The --repick flag enables the repicking of primaries
as discussed in section 5.2. The —-tryRevC flag enables reverse complement checking
of input sequences as discussed in section 5.3.3. The --keepGoing flag enables the
extended search capabilities discussed in section 5.3.2. Finally, the -—-vPrimary op-

tion turns on the virtual primary generation feature for each cluster as discussed in

28

section 5.4.2.

If parallel execution of the program is desired, the mpirun program must be
used to launch the executable on multiple compute nodes simultaneously. The
“np X” (where X is a number) argument of this program is used to designate how
many compute nodes to use. For example, to run UIcluster 3.0 on 8 compute nodes
with the default options and an input sequence file named segs.fasta the command is
“mpirun -np 8 uicluster seqs.fasta”. To execute the program serially the command
would have been simply “wicluster segs.fasta”. In addition to using mpirun for parallel
execution, all of the input files need to be available on each of the compute nodes

(e.g. cross-mounted using the network file system (NFS) protocol).

5.5.3 Output File Format

The cluster files output by all version of the clustering application are format-
ted in essentially the same way. The new clusters are output in a file named the same
as the input sequence file with an “clus” extension (e.g. the cluster file output for an
input file named input.fasta is input.fasta.clus). In the incremental clustering mode,
a file with an “ out” extension is output each cluster file input into the program.

Each cluster file contains one or more clusters, each cluster being comprised
of one or more sequences. For each cluster, the cluster primary is given first and
is signified by a line starting with “@P:” followed directly by the sequence’s name.
The sequence string starts on the next line. The sequence is printed as seventy bases

per line. Any secondary sequences belonging to the cluster follow directly after the

29

primary, and are formatted in the same way except that each sequence definition
starts with “@S:”. If the virtual primary option is enabled, it is located between the
primary and the first secondary sequence. Its sequence definition starts with “@VP:”.

In addition to the cluster output files, there are two accompanying files output.
The rejects file (input sequence file-name with the “.rej” extension appended) contains
sequences that were rejected from the clustering. The format of this file is a numbered
list of sequences and is fairly self-explanatory. The hits file (input sequence file-name
with the “.hits” extension appended) contains the list of clusters that were found to
contain a match meeting the users N out of M similarity criteria for each sequence.
In UIcluster 3.0, each line in this file is formatted as a sequence name followed by
a list of tuples of the form cluster_ID.match_score:direction representing the matched
cluster for that sequence. The direction field is either “f” or “r”, indicating forward

and reverse complement matches. A sample entry of this file listing two matched

clusters (i.e., cluster ids 4 and 98) is “UI-R-AO-ae-e-12-UI: 4.378:f 98.175:r".

60

CHAPTER 6
RESULTS

This chapter presents results obtained by utilizing the UIcluster clustering
application discussed in this thesis. The first two sections of the chapter discuss two
important uses of the application — novelty assessment and gene index creation. The
third section of the chapter compares the University of lowa’s rat gene index created
by UIcluster and NCBI’s rat UniGene index. Finally, the last section reports on

the measured performance and memory usage of the various versions of UIcluster.

6.1 EST Sequencing Novelty Assessment
UIcluster was originally developed for the purpose of assessing 3’ EST se-
quencing novelty rates, roughly corresponding to the gene discovery rate. The pro-
gram has been used in the production sequencing pipelines of several projects under-
way in our laboratories at the University of Iowa [11] and at other institutions
(KAIST, Korea, Washington University, St. Louis, UNL, Lincoln, MCW, Milwaukee,
among others). Equation 6.1 states the equation used for calculating percent novelty.

clusters

% Novelty = % 100 (6.1)

sequences

This equation is utilized to calculate incremental and overall novelty rates

61

for individual libraries and for projects as a whole. Incremental novelty calculations
are performed daily to monitor the sequencing efforts and to determine when library
subtractions and/or normalizations should occur [5]. Both of these procedures have
been proven to dramatically increase novelty rates. However, they are time consuming
and cannot be performed on a continual basis.

Figure 6.1 shows an example of the effectiveness of these procedures for a
progression of four cDNA libraries, named C0, C1, C2p, and C3. More details can

be found in [25].

100.00% -
90.00% ~

80.00% /\/\ AN

] |/ N

o \ } \ / \ — Incremental
50.00% N | |—overall

40.00%

Percent Novelty

30.00%

20.00%

10.00%

0.00%

0 5000 10000 15000 20000
Sequences Clustered

Figure 6.1: Incremental Library Novelty

CO0, the first in the progression, was sequenced to obtain roughly 7,000 ESTs.

This is shown in figure 6.1 as the left-most downward trend. To increase the novelty

62

rates, the C1 library was created by removing previously seen cDNA transcripts from
the CO library. Sequencing from this library is depicted in the second downward
trend in the figure (7,500-12,000). Again, over time the sequencing from this library
became too low and the C2p library was created from it. This is shown in the third
downward trend in the figure (12,000-17,000). Finally, the C3 library was created
from C2p to improve novelty rates (17,000-21,000). For each successive library, the
incremental novelty rates steadily decrease since the redundancy removing procedures
are not perfect. It should also be noted that the large drop-offs in novelty immediately
before each library is a unique characteristic of this data set and will probably not be

observed for other library progressions.

6.2 Generation of Gene Indices

A related task to novelty assessment is gene index creation. Ideally, running
UIcluster on a set of sequences will assess novelty and generate a gene index (or
UniGene set as it is popularly referred to). Each cluster will represent a gene, and
the total number of clusters divided by the number of sequences will represent the
novelty of the sequences clustered. Such indices are essential for picking cDNA clones
to use in the radiation hybrid mapping efforts under-way at our laboratory.

The specific procedures that are used to generate our UniGene indices are
constantly being refined. The similarity criteria that we have most recently been
using is a matching window of 38/40 (i.e. N = 38, M = 40) bases between two

sequences for them to be put into the same cluster. Over time, the repicking of

63

primaries and the reverse complement checking features have been incorporated into
our UniGene build procedure. At the time of writing this thesis (April 9, 2001),
our Rat Gene Discovery UniGene index contains 62,296 clusters, 213,372 sequences.
Our Human Cancer Genome Anatomy Project UniGene index contains 29,509 clusters
(40,684 sequences), and our Mouse Brain Molecular Anatomy Project contains 37,983
clusters (88,844 sequences). Current statistics on our UniGene indices can be obtained
from our project web site (http://genome.uiowa.edu).

Recently, the number of genes estimated to be in the human genome has
been reduced from 100,000 to 30,000-40,000 [17]. Most other higher-level mammalian
organisms are expected to have similar numbers of genes. This is causing us to
revise our UniGene build procedure because, for example, our 62,296 rat clusters
(genes) seems to be much too high (underclustered). We suspect low-quality ESTs
and other sequencing errors (alternative polyadenylation, internal restriction sites,
and internal priming) to be the cause of this. As a first attempt at eliminating
such contamination, we have formed a Rat UniGene set by only counting clusters
that contain one or more sequences with both the tail and signal features present.
These features are identified in an EST sequence by the estPrep application that our
laboratory has developed [11]. When this criteria is applied, 23,902 clusters remain in
our rat UniGene index. We are currently evaluating the effectiveness of this change.
However, the reduced number of clusters seems to be more consistent with the revised

gene estimates. An additional change planned for the future is to utilize the draft

64

human genomic sequence to verify clusters. This is possible because most rat genes
(> 98%) are also present in the human genome. If all sequences in a cluster match to a
localized region of the human genome (e.g., within the same 10,000 base region) then
that cluster is likely to represent the same gene. Clusters with sequences matching

distant regions of the genome should be looked at with suspicion.

6.3 Accuracy Assessment
Comparisons between our rat UniGene index and NCBI's UniGene index [27]
will be used to assess the accuracy of our sequence-similarity-based clustering. Ad-
ditionally, the sequence assembly program phrap [13] will be used to assemble our
clusters into consensus sequences. Instances where the sequences in a cluster assemble
into one consensus (contig) provides additional evidence that the sequences represent

the same gene.

6.3.1 Comparisons to NCBI UniGene

A set of Perl [35] scripts were developed to compare our rat clustering results
to NCBI’s rat UniGene (ftp://ftp.ncbi.nlm.nih.gov/repository/unigene). In order to
obtain the most fair comparison, the 128,229 University of lowa ESTs contained in
this index were extracted and put into a FastA formatted file. This number is reduced
from the 213,372 sequences stated earlier because NCBI requires the tail feature to
be present in an EST for it to be used in their clustering. Other minor EST selection
criterias also differ between our methods.

The latest version of UIcluster was used to cluster this data set. The param-

65

eters used were N = 38, M = 40,(= 8, A = 15 and the repick primary and reverse
complement checking options were enabled. Running UIcluster resulted in 41,726
clusters. Three types of cluster relationships were then determined by the Perl script
— clusters matching between the UIcluster clustering and NCBI’s clustering and
clusters that are split into one or more clusters between the two. These relationships
are shown graphically in figure 6.2. The case where a UIcluster cluster is totally
contained in a single NCBI cluster (e.g., in the figure there is an extra sequence in

the NCBI cluster for the matching clusters case) is considered to be matching.

UICluster NCBI UniGene
Clustering Clustering

a) matching clusters

b) split cluster

Figure 6.2: Comparing Clusters

The analysis of the 41,726 clusters generated by UIcluster showed that 39,165

clusters (93.9%) matched an NCBI cluster. The remaining 2,561 clusters (6.1%) were

66

split into multiple NCBI clusters. Performing the comparison in the opposite direction
for the 41,522 NCBI clusters containing University of lowa ESTs resulted in 38,890
(93.7%) NCBI clusters directly matching a UIcluster cluster. The remaining 2,632

(6.3%) NCBI clusters were split among multiple clusters in the UIcluster clustering.

6.3.2 Analysis of Cluster Assemblies

Another set of Perl scripts were developed to generate cluster consensus se-
quences for each of our clusters using the phrap [13] sequence assembly program.
Ideally, each cluster should assemble into one contig (i.e., a consensus sequence that
every sequence in the cluster aligns to) since all of the sequences should represent the
same 3’ UTR. In practice, clusters containing sequences from multiple transcripts of
the same gene will assemble into more than one contig. Clusters containing sequences
that shouldn’t belong will also cause multiple contigs to be produced.

The script’s analysis of our refined 23,902 cluster rat UniGene index (i.e., the
index discussed at the end of section 6.2 that was generated by only using ESTs
with the tail and signal features present) shows that of the 13,334 non-singleton
clusters (i.e., clusters containing only one sequence), 8,362 (62%) assemble into one
consensus sequence that represents all of the sequences in the cluster. These clusters
are likely to represent true genes. The remaining 37% assemble into more than one
consensus sequence. Automated methods for classifying the causes of these cases
are currently being developed. However, hand examination is showing that the vast

majority appear to be instances of multiple splice forms being present in the same

67

cluster. Other causes include alternative polyadenylation, internal not sites, chimeric
sequences, and internal priming. This analysis is somewhat encouraging considering
that it is estimated that between 30-40% of human genes contain multiple splice
forms. However, splicing variations are thought to usually not occur in the 3" UTR.
Thus, further inspection by expert biologists is needed to gain more understanding

of the multi-consensus clusters.

6.4 Performance Assessment
The performance of the versions of UIcluster presented in this thesis is dis-
cussed in this section. While it is impossible to examine the entire parameter space
of the program, an effort has been made to present the most important performance
metrics. All of the performance results obtained in this section were obtained using a
set of 16 dual 500MHz Pentium III computers. Each computer (compute node) con-
tained either 1 gigabyte or 2 gigabytes of memory. Gigabit Ethernet (1000 megabits

per second) was used for the communication network.

6.4.1 Execution Time
For serial execution, the largest performance increase was realized with the
introduction of the global hash table in UIcluster 2.0. Figure 6.3 shows the per-
formance difference between TLcluster and UIcluster 2.0 for clustering 80,766 rat
EST sequences with a similarity criteria of N = 38, M = 40. For this test, (= 8
and A = 15 were used with UIcluster 2.0. These are the parameters that our

production pipelines currently employ. Other parameters will produce differing lev-

68

els of performance gain, however results similar to those presented in this figure are
typically observed. The serial performance of UIcluster 2.0 and UIcluster 3.0 is

essentially the same.

60000

Ticluster _———»

50000

40000

30000

Time in Seconds

20000
Ulcluster 2.0
~30 Mnutes

\

s m——=
10096 20192 30288 40384 50480 60576 70672 80766

10000

Sequences Clustered

Figure 6.3: TLcluster vs. Ulcluster

Figure 6.4 illustrates the parallel speedup obtained by UIcluster 3.0. Since
the implementation uses a collective communication at the end of every sequence, the
amount of computation required for each sequence is important. As the grain size
increases, better performance should be observed since relatively less communication
is being performed. The first curve (labeled 1) corresponds to the default parameters
used in our pipeline. The second curve (labeled 2) adds the extended search option.
The third curve (labeled 3) adds the reverse complement checking.

Performance actually decreases from the serial case with two compute nodes

for the first case. This is probably due to the computation not being distributed

69

Figure 6.4: Parallel Speedup

evenly and the added cost of the communication. As the computation is spread across
more compute nodes, performance increases somewhat but is never more than double
the performance of the serial case. The single node execution time of this case is
approximately 12 minutes and the execution time of the 16 node run is approximately
7 minutes.

Enabling the extended search of primaries significantly increases the realized
speedup. The computation scales well up to 8 nodes and then levels off. For this
curve, the execution time of the single node run was approximately 38 minutes and
the execution time of the eight node run was approximately 8.5 minutes.

The third curve scales approximately the same as the second. The execution
time of this case of the single node run is approximately 48 minutes and the execution

time of the eight node run is approximately 11 minutes.

70

6.4.2 Memory Usage

The introduction of the global hash table in UIcluster 2.0 greatly increased
the memory requirements of the application. For a set of 82,624 ESTs, TLcluster
required about 100 megabytes of memory. For the same data set, both versions of
UIcluster required roughly 171 megabytes of memory.

Figure 6.5 shows how memory usage scales for the same data set with UIcluster
3.0. The memory requirements scale fairly linearly for increased numbers of compute
nodes, which suggests that the approach of distributing an equal number of clusters

to each compute node works well.

180
160 \

140 \

Memory in Megabytes Per P
@
2

Figure 6.5: Parallel Memory Scaling

Since user programs are limited to addressing 2 gigabytes of memory with
Linux, the maximum number of ESTs that can be clustered is limited to approxi-

mately 1 million sequences. For larger data sets, memory becomes an issue when

71

executing serially. UIcluster 3.0 has been used to successfully cluster a data set of
1,956,525 mouse EST sequences. Performing this clustering with 16 compute nodes
required approximately 300 megabytes per compute node and 18 hours, 34 minutes

of compute time.

6.4.3 Parameter Variation

Figure 6.6 shows how enabling various options effects the execution time of
UIcluster 2.0 (and thus UIcluster 3.0 when executing with a single compute
node) for a data set of 82,624 ESTs. All of the cases in top half of the figure were
used with the similarity criteria N = 38 and M = 40 and the parameters (= 8
and A\ = 15. The “default” option means that UIcluster was run without the
repicking of primaries (i.e., “Repick”), reverse compliment checking (i.e., “TryRev”),
extended searching (i.e., “Ext”), and virtual primaries generation (i.e., “vPrim”)
options enabled. The virtual primary generation option increases execution time the
most. This is because calling the external bl2seq program, used to implement the
option, involves considerable overhead. Various option combinations are also included
in the table. It should be noted that the execution times of these option combinations
are not simply the execution times of the individual options added. This is because
options can effect one another (e.g., enabling the extended search option and the
reverse complement checking option means that the reverse complement is always
generated and checked for each input sequence This increases the overhead for each

input sequence considerably).

Parameters Time in Minutes
Default 11.2
Repick 15.21
TryRev 23.4
Extended 36.2
Virtual Primaries 79.1
TryRev + Ext 92.33
TryRev + Ext + Repick 118.2
TryRev + Ext + Repick + vPrim 149.75
C'=6 A=21 > 24 hours
=7 A=18 440.17
£'=8 A=15 36.6
£'=9 A=12 9.46
£'=10 A=9 5.32
'=111=6 5.3
{'=12)=3 5.26
=13 A=1 5.18

Figure 6.6: Effects of clustering options on execution time

72

The bottom half of the figure gives the run-times of the program using different

values of (" and A with the same similarity criteria as before (N = 38, M = 40). The

run-time using the optimal value of ¢ = 13 is also given (calculated by equation 5.3).

For each (', A is calculated by the formula given in section 5.3.1 (equation 5.4). When

(" = 6, the empty global hash table uses only 16 kilobytes of memory. However, per-

formance is very poor because too many false candidate primaries are identified.

When ¢ = 13, the global hash table uses 256 megabytes of memory. However, ap-

proximately the same performance can be obtained by using ¢’ = 10 and A = 9. This

is because for (' = 10 or greater, the global hash table optimization is nearly 100%

effective in filtering the search space down to only true candidate primaries. Thus,

the ScoreMatch function is called the minimal number of times. For (' = 10, the

empty global hash table uses a reasonable 4 megabytes of memory.

73

74

CHAPTER 7
CONCLUSION AND FUTURE WORK

This thesis has presented a software tool for genetic sequence clustering. It
has the characteristics of high-performance, accuracy, and flexibility. UIcluster
has proven its robustness and utility by its use in several large-scale gene discov-
ery projects at the University of lowa. Additionally, the flexibility of UIcluster
has allowed it to be useful for many applications beyond its initial intent of 3° EST
clustering.

However, there is still room for improvement. The following sections provide

brief overviews of some of the more significant enhancements proposed for Ulcluster.

7.1 Alternative Transcript Identification
Currently, sequences that may be candidates for alternative splicing are marked
for later inspection by a human operator. More advanced techniques could be incor-
porated into UIcluster that examine clusters and attempt to identify exon bound-
aries and alternative transcripts. When available, these techniques could make use of

genomic sequence data to accurately order the exons that are identified.

I6)

7.1.1 Without Genomic Sequence

Currently, the virtual primaries created for a cluster will only represent a single
transcript. Sequences added to a cluster either are consistent with the virtual primary
or they are flagged as problem sequences for later inspection. Such sequences may
represent different transcripts of the same gene, possibly containing exons that are not
present in the current virtual primary. For example, the comparison of a sequence to
a virtual primary may contain a matching region, followed by a non-matching region,
followed by another matching region. The non-matching region possibly represents
an exon not currently in the virtual primary. This region could be inserted into the
virtual primary and the boundaries could be noted as exon boundaries. The resulting
virtual primary created by this type of procedure will contain all of the exons present

in a cluster, but they may not be in the order that they occur in the genomic sequence.

7.1.2 With Genomic Sequence

Now that the genomes of several organisms have been completely sequenced,
the is tremendous opportunity to use genomic sequence along with clustering. This
information can be used to resolve ambiguous exon orderings and verify exon bound-
aries. For example, the virtual primary of a cluster may contain four identified exons,
labeled A, B, C, and D. One transcript in the cluster may be spliced as ABD. Another
transcript in the cluster may be spliced as ACD. Given these observations only, the
virtual primary could be represented as ABCD or ACBD. Without genomic sequence,

the order of exons B and C is ambiguous. The genomic sequence provides a means

76

to resolve the order of these exons. One possible approach would be to take a cluster
virtual primary and find the region of the genome that contains it using a program
such as BLAST [3]. This region could then be used to resolve any ambiguous exon

orderings.

7.2 Confirming Gene Predictions

The exons identified by UIcluster in the virtual primaries can be useful
for verifying the accuracy of gene prediction programs such as GenScan [7] and
GRAIL [14]. Gene prediction programs are based on generalized models of genes
and can often make mis-predictions. The empirical observation of an mRNA tran-
script verifies that a predicted gene actually exists and that a particular transcript
of that gene is truly expressed (i.e., it is a splice form that can be produced during
transcription). Additionally, the exon boundaries identified in the virtual primary

verify that the predicted exon boundaries are correct.

7.3 Manual Curation
A high quality UniGene index requires human intervention to resolve ambigu-
ities that arise during automated clustering. NCBI’s UniGene indices, for example,
are curated and updated by a human operator as new information becomes available.
This produces a more accurate clustering and a better estimate of the number of
genes discovered.
Ulcluster’s incremental clustering capability could provide similar capabilities

by carrying curation decisions through clustering iterations. However, there are cur-

77

rently no user-friendly tools available to facilitate this. Ideally, such an application
would incorporate all information output by the program including the match infor-
mation, the extended search data, and the virtual primaries. Additionally, outside
information such as genomic sequence and annotations could be incorporated. This
information could all be combined to allow a human operator to resolve ambiguous
situations and fix errors discovered in the clustering results. Additional tools such as
BLAST, phrap, and GenScan could be selectively used by a human operator to make
more informed curation decisions.

A cluster viewer has been implemented by the author during the course of
developing UIcluster to better visualize the composition of clusters. This tool,
written in Java [16] and shown in figure 7.1, could be extended to perform the features
discussed in this section. The output of the program might be a file containing
curation decisions that can be input into UIcluster when an incremental clustering
is being performed. UIcluster would apply these decisions before clustering any new

sequences.

7.4 Cluster Merging
If an input sequence is found to be similar to more than one cluster primary,
this provides evidence that the matched clusters should possibly be merged. However,
merging clusters automatically due to linkage by only a single sequence is probably not
the approach to take. The cluster curation tool (discussed in section 7.3) could present

such cases to an expert biologist, who could then decide if the identified clusters

78

ee@ 0

File
~Search i
UI-R—Y0-acu—d-09 | Find Next |
2202 Primaries- 3 Secondaries- 0
BP: UI-R-Y0-maz-f-11-0-UI. sl - @5: UI-R-Y0-aaz- -g- 06-0-UI. =1 27 27 386 997409
@P: UI-R-¥0-amsz-g-01-0-UT. s1 Ea ||@5: UI-R-¥0-acl-f-12-0-UI. sl 27 27 443 100,000
@F: UI-R-¥l-abr-h-12-0-UT. si 185 UI-R-¥0-ack-b-03-0-UI.sl 27 27 386 100,000

@P: UI-R-¥0-aaz-g-04-0-UI. sl
GP: UI-R-¥l-aaz-g-05-0-UI. sl |

@P: UI-R-Y0-aaz-g-07-0-UI. sl
GP: UI-R-YO-asz-g-08-0-UI. sl
BF: UI-R-YD-aaz-g-09-0-UI. sl

1

-Sequence Data —————————
—Primary-

SBTCTTTTATIGTITCCACAGAGCCCAAACTGTACTTGTTATCAGGATCTIGTTTCTGAAGCTAG
GMMTG&GBTGTGATTGGTGRGBGTGGTGGMGGTTGBGTTGTGMMATMATBGG.\TBGMM\N}TTBGTG.\T}LTBGTTGTTTTTR
ACTGTTGTGECTTGCTGARTCAGAGCCECTGAAT T TRARACAAGT TCARTATCATTTCCT ICAAGGAT TAACTCATCCTICTGEGC T TRAG
AGACAGRACAAGCAACACCTGTCCTCATCCGAACCCTCCEGATGTATTTTTCACCCAAGARATTTCGGAT TTCARCCAGAGACCCATTCTC
CTGAATRACGACGTTGATAGGGAAGTGAGCATACACAGACCTCATCTIGTARCGGAAGCCCAGTGTCACACCCTIGATCATGTTCTGAACA
TGACTGCAGATGGTICTGACAGTGGC CAGTTCOTTC CTGTTACC COACCACTTGTCAACACGGAG CCTTTTCTITTICTTTCCAARMAGAC
TCAGCTCTACATTGATCTGATTGAAGTCCCTCOTCAA

~Secondary: StartP = 27, StartC = 27, Len = 386, Score = 99.740933 Dir = FORWARD——

BTCTTTTATTBTTTCCACAGABCCCARACTGTACTTGT TATCABBATCTIGTITCTGAABCTAG |
GAAACTGAGGTCTCATTCGTCABGCTGCTEGACGET ICCCTTCT CAGARACATAGAT GCCATCCAARARCTICCTGATATCCITGTITITIA
ACTGTIGTGGCTTGLTGARTCAGAGCCECTGAATTTGARACAAGTTCARTATCATTTCCTICAAGGAT TAACTCATCCTICTGGGETTGAG
AGACAGRACAAGCAACACCTGTCCTCAT COGAAGCC TCOGEATGTATTTTTCACCCAAGARAT TTCGGAT TTCAAGCCAGAGACCCATTCTC
CTGAATAACGACGTTGATAGGGAAGTGAGCATACACAGAGCTCATCCTT |

Figure 7.1: Cluster Viewer

should be merged. Alternatively, clusters that are linked by multiple input sequences
might be automatically merged by UIcluster. A threshold for the minimum number
of input sequences linking two clusters before they are automatically merged could
be a parameter specified by the user at run-time. Merging clusters complicates the
parallelization approach that has been utilized in UIcluster 3.0 since clusters may
need to be moved between compute nodes. A possible alternative approach is to

use the incremental clustering capabilities of the application to iteratively cluster the

79

virtual primaries. If two virtual primaries are found to be similar, then the clusters
that they represent could possibly be merged. After several iterations, steady state

will be reached and no additional clusters will be merged.

7.5 Long Transcribed Sequences

The hashing techniques that we have employed are most useful for short EST's
(400-1000bp). The approach is also sufficient for full length cDNA sequences (1000—
5000bp) and other long transcribed sequences. However, performance is degraded sig-
nificantly when clustering such sequences. This is thought to be due to the increased
probability of finding matching hashes between longer sequences. Additionally, the
probability of multiple hash matches being widely separated is greater. This reduces
the effectiveness of the thresholding scheme we have used (discussed in section 5.3.1).
A possible solution to this problem is splitting long sequences into smaller, overlapping
windows (e.g., an 5,000bp sequence could be split into 9 1000bp windows, where each
successive window overlaps the previous window by 500bp). ScoreMatch would only
be called when the user’s A threshold is met for a given window (see section 5.3.1).
The sequence comparison would start at the locations of the matching windows in
both sequences but the identified match may extend beyond the boundaries of these
windows in the original sequences. The window size and degree of overlap should be
parameters that are specified by the user at run-time. Implementing this functional-
ity has the potential to improve the performance of the program significantly when

clustering full length cDNA sequences.

80

7.6 Automatic Calculation of (' and A

UIcluster could be made more user friendly by automatically calculating
appropriate values for ¢’ and \ for a specified similarity criteria. This would require
obtaining the total amount of memory available and choosing (" accordingly. It should
be noted that the value of (' that most closely approximates the performance obtained
by the value calculated by equation 5.3 will differ depending on the size and novelty
of the data set being clustered and the similarity criteria used. Additionally, the user
may wish to obtain better performance by choosing a higher A threshold than that
calculated by equation 5.4, knowing that some sequence similarities may be missed.
Therefore, one approach to automatically calculating these values would be to give
the user several (" and A combinations to choose from depending what his or her goals

are and the type of data set being clustered.

7.7 ExtendMatch Improvements
The approach currently used by the ExtendMatch function (see section 5.1.2.2)
does not determine the end of a matching region with enough accuracy to be useful
for generating the virtual primaries. This is why the use of bl2seq was necessary
for the virtual primary generation feature (where determining overlaps accurately is
important). A member of our laboratory is currently working on an improved version

of ExtendMatch that will be incorporated in the next release of UIcluster.

81

APPENDIX
UICLUSTER 3.0 SOURCE CODE

A.1 Header Files
A.1.1 uicluster.h

K3k o ok K KoK oK o KK KoK 3K o KK KoK oK oK o K KK KKK 3K 3 3 KK KKK oK 3K 3 K KK KoK oK oK o 3 K K KoK 3K oK 3 KK K KoK oK oK o K K K KoK oK K
uicluster.h

begin : Sun Dec 12 1999
author : Kevin Pedretti
email : pedretti@eng.uiowa.edu

ok ok ok kKKK K kKoK koK KK Kok KR KR Kok KKk Kok K KR KR Kok kKK KR KK KR K kK KRk Kk Kk kK ok /
#define NEW(TYPE) (TYPE *)emalloc(sizeof (TYPE))

enum {
MAXFNAME = 100,/* max filename length in chars */
MAXPRE = 100,/* max num of previously clustered files */
MAXSNAME = 40,/* maximum sequence name */
MAXSLEN = 2000000,/* maximum sequence length */
FORWARD = 1,/* indicates seq in forward direction */
REVCOMP = 2,/ indicates seq in reverse compliment dir */
NBASESONLINE = 70,/* num of bases to print per line */
MAXLINE = 200000,/* maximum length of any line */
A =0,
c=1,
G =2,
T =3,
SUCCESS =
FAILURE =
TRUE = 1,
FALSE = 0,
FAILEDHASH = -1,/% indicates that no hash could be generated */
NOHIT = 0,/* indicates no similar cluster was found */
NO_MORE_SEQS = -1,/* indicates that there are no more segs in
input file */
GOOD_SEQ = 0,/* indicates that input sequence is not a
reject */

I
o =

REJECT_SEQ = 1,/* indicates that input sequence is a reject */
INTERNAL = O,
BOTHEXT = 1,
TAILEXT = 2,
FRONTEXT = 3,
PROBLEM = 4,

};

typedef struct Secondary Secondary;
struct Secondary {
char *name; /* name of secondary sequence */
char *seq; /* sequence string */
double score; /* score of secondary (100 means perfect
match) */
int iP; /* match start index in primary */

82

int iS; /* match start index in secondary */

int matchLen; /* match length in number of bases */
int dir; /#* direction of match. FORWARD or REVCOMP */
int tovp; /* how this seq aligned to the vp */
Secondary *next; /* Secondary in list */

};

typedef struct Primary Primary;

struct Primary {
int clusID; /* cluster ID of this primary */
char *name; /* name of primary sequence */
char *seq; /* sequence string */
int *hashes; /* hash array for sequence string */
int *indexes; /* index array for hash positions in seq */
int nHashes; /* number of hashes */
int nTouched; /* used for seaching -- num times this
primary has been examined */
int nSecondaries; /* number of secondaries for this primary */
Secondary *headS; /* pointer to the head secondary */
Primary *nextCP; /% used for searching -- next primary in
candidate list */
Primary *next; /* Primary in list */

/* virtual primary related variables */

char *vp; /* virtual primary */

int vpLen; /* cur len of the vp */

int maxvplen; /* max length of the vp */

int nBothExt; /* num secondaries extending vp on front and
tail */

int nFrontExt; /* num secondaries extending vp on front */
int nTailExt; /* num secondaries extending vp on tail */
int nInternal; /* num secondaries totally contained in vp */
int nProblems; /* num secondaries not hitting well to vp */
int tovp; /* how this seq aligned to the vp */

A.1.2 cluster.h

3k sk sk sk sk sk sk sk sk sk sk sk ok sk sk sksk sk sk ok sk ok ok ok ok ok sk ok sk ok sk ok sk sk sk sk skok k sk ok ok k ok ok ok sk ok sk ok sk ok sk ok sk ok ok oK KoK
cluster.h

begin : Sun Dec 12 1999
author : Kevin Pedretti, Tom Casavant
email : pedrettiCeng.uiowa.edu

***/

typedef struct GHTEntry GHTEntry;

typedef GHTEntry *GHTEntry_p;

struct GHTEntry {

Primary *primary; /* pointer to the primary for this entry */
GHTEntry #*next; /* GHTEntry in list */

I

typedef struct Hit_str Hit;

typedef Hit *Hit_p;

struct Hit_str {
int clusID; /* the clusID hit */
int score; /* the score of the hit */
int dir; /* direction of the hit x/

};

void cluster(int, int, FILE *, FILE *, Options, Primary *x, Primary *,
int *, int *, int *, int *, int *, int *, int *, int x);

void writeClusters(FILE *, Primary *, int, int *, char *[], int[], int,

int);

void addPrimary(int, FASTASeq *, Primary **, Primary **,
int[], int[], int, GHTEntry_p[], int);

void addSecondary(FASTASeq *, Primary *,
int, int, int, int, int,
int, int, GHTEntry_p[], int[], int[], int,
Options, int *, int *, int *);

void addtoGHT(GHTEntry_p *, Primary *, int);

void remfromGHT(GHTEntry_p *, Primary *, int);
int hashSeq(char *, int, int, int, int[], int[]);
int compareSegs(int, int,

Primary *, char *,

int *, int *, int,

int, int, int,

int *, int *, int, int, int *, int *, int *);
void sortHitList(Hit_p hits, int nHits);

A.1.3 compare.h

/***

compare.h
begin : Mon Dec 13 1999
author : Tom Casavant - modified by Kevin Pedretti
email : pedrettiCeng.uiowa.edu

ok ok oK o K oK oK KoK K oK KoK K oK o K KoK o KoK o KK oK o K Ko KoK o KK ok oK K o K ok o ok ok K ok sk ok Kok o Kok ok K ok ko ok Kok

int ScoreMatch(char *strPattern, int strPatternlIndex,
char *strSubject, int strSubjectlIndex,
int iLengthToMatch,
int iWrongLimit, int iGapLimit, int iWrongOrGapLimit,
int iWrongPenalty, int iGapPenalty,
int iRecursiveFlag,
int *nWrong_p, int *nMissing_p, int *nInserted_p);

void extendMatch(char *pSeq, char *cSeq,
int topScore, int lengthToMatch, int hashSize,
int radix, int skip, char maskedChar,
int wrongLimit, int gapLimit, int wrongOrGapLimit,
int topPIndex, int topCIndex,
int wrongPenalty, int gapPenalty,
int *totalErrors, int #*bestLength);

A.1.4 fasta.h

/***

fasta.h
begin : Sun Dec 12 1999
author : Kevin Pedretti
email : pedrettiCeng.uiowa.edu

***/

typedef struct FASTASeq FASTASeq;

struct FASTASeq {
char name[MAXSNAME]; /% name of sequence */
char *seq; /* sequence string */
FASTASeq *next; /* FASTASeq in list */

84

};

void readSeqs(FILE *, FILE *, int, FASTASeq **, int *, int *);
int readSeq(FILE *, FASTASeq *, FILE *, int, int);
void printSeq(FILE *, char *, int, int);

A.1.5 incremental.h
[kKo sk o ok ok sk ok o ok ok sk ok ok o ok K sk ok ok ok o ok K ok sk ok ok o o ok K Kok ok o ok o ok kK sk ok ok ok o o kK ok Kok ok ok o o K K Kok ok ok o o kK K Kok ok ok
incremental.h

begin : Wed Jan 12 2000
author : Kevin Pedretti
email : pedrettiCeng.uiowa.edu

***/

int readClusFiles(char *c, Primary **, Primary **, char *[], int[]);
int parseClusFile(FILE *, Primary **, Primary **, int *, int *);

A.1.6 memory.h

/***

memory.h
begin : Tue Dec 14 1999
author : Kevin Pedretti
email . pedretti@eng.uiowa.edu

***/

enum {
GHTBLOCK = 1000000,/* block size ’GHTEntry’ preallocations */
PRIMEBLOCK = 300000,/* block size for ’Primary’ preallocations */
SECNDBLOCK = 1000000,/* block size for ’Secondary’ preallocations */
FASTABLOCK = 1000000,/* block size for ’FASTASeq’ preallocations */
SEQBLOCK = 1000000,/* block size for prallocations for sequence
data */

};

GHTEntry *getGHTEntry();
Primary *getPrimary();
Secondary *getSecondary();
FASTASeq *getFASTASeq();

A.1.7 options.h

KKK Ko oK o KK oK o oK ok o KK o K KoK o KoK ok oK KoK o K Kok o KoK o K ok o K K o KoK o KoK ok K oK o K Kok o Kok ok K ok sk ok ok

options.h
begin : Sun Dec 12 1999
author : Kevin Pedretti
email : pedrettiCeng.uiowa.edu

***/

/* Structure containing all user-defined parameters. */
typedef struct Options Options;
struct Options {

char inFile[MAXFNAME];

char preCFile[MAXFNAME] ;

int rejCrit;

int hashSize;

int startSkip;

int endSkip;

int lenToMatch;

int errLimit;

char maskChar;

int repick;
int tryRevC;
int hitThresh;
int wrongPen;
int gapPen;
int keepGoing;
int vPrimary;

};

/* Called from main to get user-defined parameters from the command-line */
int getopts(Options *, int, char *x);

/* Prints out the user-define parameters parsed from the comman-line */
void printopts(FILE *, Options);

/* print command-line arguments and usage instructions */
void printUsage();

A.1.8 gsort.h

KKK KoK oK K o KoK oK ok K ok o KoK o K KoK o KoK o oK KoK o K Kok o KoK o K ok o K K o KoK o KK ok K oK o K Kok o Kok ok K ok sk ok ok

gsort.h
begin : Mon Dec 13 1999
author : Kevin Pedretti
email : pedrettiCeng.uiowa.edu

***/

enum {
M = 7,/% threshold list size for abandoning gsort */
NSTACK = 50,/* stack size, may have to increase */
NR_END = 1,/* sentinel */

};

#define SWAP(a,b) temp=(a);(a)=(b);(b)=temp;
#define FREE_ARG charx

void nrerror(char error_text[]);
int *ivector(long nl, long nh);
void free_ivector(int *v, long nl, long nh);

/* Do a quick sort on data[] while maintaining consistancy with index[].
NOTE: This sort routine sorts datal[l..n] NOT datal0..n-1].
The caller should account for this.
*/
void gsortWIndx(unsigned long n, int datal[], int index[]);

A.1.9 utils.h

/***

utils.h
begin : Sun Dec 12 1999
author : Kevin Pedretti
email : pedrettiCeng.uiowa.edu

***/

#define min2(X, Y) ((X) < () 7 (X) : (Y))
#define max2(X, Y) ((X) > (Y) 7 (X) : (V)

void setprogname(char *str);

char *progname(void);

void setversion(char *str);

char *getversion(void);

extern void eprintf(char *, ...);

85

extern void wprintf(char *, ...);
extern char *estrdup(char *);

extern void *emalloc(size_t);

extern void *ecalloc(size_t, size_t);
extern void *erealloc(void *, size_t);
extern char *progname(void);

extern void setprogname(char *);

int nmallocs();

char *chomp(char *);

int countBases(char *);

int ipower(int, int);

void revComp(char *in, int len);

char *printTime(time_t, time_t);

A.1.10 bl2seq.h

/***

bl2seq.h - description
begin : Sun Mar 18 2001
copyright : (C) 2001 by Kevin Pedretti
email : pedrettiCeng.uiowa.edu

***/

KKK KoK oK KK oK o oK ok o KoK o K KoK o KoK o oK KoK o K Kok o KoK o K ok o K K o KoK o K ok oK oK o K Kok o Kok ok Kok sk ok ok

* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *

ok ok ook kKKK K Kok KK Kok KR KR Kok KKK Kok K KR R kKKK KR KRR KR kK kKR Kk Kk Rk ok /
enum {

BL2SEQ_MAXLINE = 1024,

STATE_INIT = O,

STATE_STARTS = 1,

STATE_LENS = 2,

STATE_STRANDS = 3,

PLUS = 0,

MINUS = 1,

PP =0

PM = 1,

MP = 2,

MM = 3
};

struct bl2seq_hit_str {
int sbl; /* start base in sequence 1 */

int sb2;

int ebl; /* end base in sequence 1 */
int eb2;

int dir; /* direction of hit */

};
typedef struct bl2seq_hit_str bl2seq_hit;

void bl2seq(char #*seql, int seqllen, char *seq2, int seq2len,
bl2seq_hit * hits, int *nHits);

int call_bl2seq(char *seql, char *seq2, char *out);

A.2 Source Files
A.2.1 main.c

/***

main.c - Ulcluster clustering program

begin : Sun Dec 12 09:43:22 CST 1999
author : Kevin Pedretti
email : pedrettiCeng.uiowa.edu

***/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "mpi.h"
#include "uicluster.h"
#include "utils.h"
#include "options.h"
#include "fasta.h"
#include "cluster.h"
#include "incremental.h"

int main(int argc, char *argv[])
{

int myRank; /* this procs rank in MPI_COMM_WORLD */

int nProcs; /* num procs in MPI_COMM_WORLD */

time_t startTime; /* start time of program execution */
time_t stopTimel; /% stop time before writing output file */
time_t stopTime2; /* stop top after writing output file */
Options opts; /* Contains user configurable options */
FASTASeq *inseqs = NULL; /* linked list of input sequences */
Primary *primaries = NULL; /* linked list of primaries */
Primary *tail = NULL; /* pointer to the last element in the primary
linked list */

int nCF = 0; /* number of previously clustered files to

read in */

char *inFiles[MAXPRE]; /* the names of the input previously
clustered files */

int div[MAXPRE]; /* indexes to last primary of each
pre-clustered file */

char outFN[MAXFNAME],/* output file name */
rejFN[MAXFNAME],/* reject file name */

logFN[MAXFNAME],/* log file name */

orphanFN[MAXFNAME]; /* orphan file name */
FILE *fd_fasta,/* input FASTA file */

xfd_out,/* output file containing clusters */

fd_rej,/ file containing rejected sequences */

xfd_log,/* log file */

xfd_orphan; /* file containing orphans */

int nSeqs = 0,/* num of input sequences */

nRej = 0,/* num of input seqs rejected */

nPrime = 0,/* num primaries after clustering */

nSecnd = 0,/* num secondaries after clustering */

n0rph = 0,/* num of orphans */

n0rphE = 0,/* num orphan events */

nReadptE = 0,/* num readopt events */

nRepick = 0,/* num repick events */

nMatchRev = 0; /* num seq matches in the REVCOMP direction */
int stat;

int i;

/* initialize MPI x/
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myRank);

88

MPI_Comm_size(MPI_COMM_WORLD, &nProcs);

/* record the start time of clustering */
startTime = time(NULL);
setprogname("UILcluster");
setversion("3.0.5");

/* only the rank O proc outputs to screen */
if (myRank == 0) {
printf("\n%s %s\n", progname(), getversion());
for (i = 0; i <= (strlen(progname()) + strlen(getversion())); i++) {
printf("-");
}
printf("\n\n");
}

/* parse the command line */

stat = getopts(&opts, argc, argv);

if (stat == FAILURE) {
eprintf(" COULDN’T PARSE COMMAND LINE.");

}

if (myRank == 0) {
printf("Running with %d processes.\n", nProcs);
printopts(stdout, opts);

}

/* open in input file */
fd_fasta = fopen(opts.inFile, "r");
if (fd_fasta == NULL) {
eprintf("can’t open %s:", opts.inFile);

}

/* build the name of this procs output file */
if (nProcs == 1) {
sprintf (outFN, "%s.clus", opts.inFile);
} else {
sprintf (outFN, "¥s-%d.clus", opts.inFile, myRank);
}

/* open the output file */

fd_out = fopen(outFN, "wc");

if (fd_out == NULL) {
eprintf("can’t open ¥%s", outFN);

}

/* only process 0 outputs rejects */
if (myRank == 0) {
sprintf(rejFN, "/s.rej", opts.inFile);
/* open the reject file */
fd_rej = fopen(rejFN, "wc");
if (fd_rej == NULL)
eprintf("can’t open %s", rejFN);

}

/* read in previously clustered file */
if (strcmp(opts.preCFile, "none") != 0) {
if (myRank == 0) {
printf("\nReading previously clustered files...\n");
}
nCF = readClusFiles(opts.preCFile, &primaries, &tail, inFiles, div);

}

/* perform clustering */
if (myRank == 0) {
printf("\nBegin Clustering...\n");

printf
("\n *status given as .num_seqs_clustered:num_new_clusters.\n\n");

}

if (myRank == 0) {
/* only the master output rejects to the reject file */
cluster(myRank, nProcs, fd_fasta, fd_rej, opts, &primaries, tail,
&nPrime, &nSecnd, &nRepick, &nOrphE, &nReadptE, &nMatchRev,
&nSegs, &nRej);

} else {
/* set fd_rej to null so nothing is output to it */
cluster(myRank, nProcs, fd_fasta, NULL, opts, &primaries, tail,
&nPrime, &nSecnd, &nRepick, &nOrphE, &nReadptE, &nMatchRev,
&nSegs, &nRej);

¥

/* record the time up until just after clustering */
stopTimel = time(NULL);

/* finish up - write primaries to file and display summary stats */
if (myRank == 0) {
printf("\n\nWritting output...\n");
}
writeClusters(fd_out, primaries, NBASESONLINE, &nOrph, inFiles, div, nCF,
opts.vPrimary) ;

/* record the stop time of the clustering */
stopTime2 = time(NULL);

if (myRank == 0) {
printf("\n");

printf("Total # Input: %7d\n", nSegs);
printf("Num Rejects: %7d\n", nRej);
printf("# Seqs Clustered: %7d\n", nSeqs - nRej);
printf("Num Clusters: %7d\n", nPrime);
printf("Num Secondaries: %7d\n", nSecnd);

if (opts.repick) {
printf("Num Repick Events: %7d\n", nRepick);
printf("Num Orphan Events: %7d\n", n0OrphE);
printf("Num ReAdopt Events: %7d\n", nReadptE);
if (nOrph > 0)

printf("Total # Orphans: %7d\n", n0rph);
}
if (opts.tryRevC)
printf("Num Matched Rev: %7d\n", nMatchRev);
printf("Total # of mallocs: %7d\n", nmallocs());
printf("Tot Elapsed time : %s\n", printTime(startTime, stopTime2));
/* printf("Qutput time : %s\n", printTime(stopTimel,

stopTime2)); */
}

/* finish up */
MPI_Finalize();
return EXIT_SUCCESS;

A.2.2 cluster.c

KKK Ko oK KK o o KoK oK o KK o K KoK o KoK ok oK KoK o K Kok o KoK o K ok o K K o Kok o KoK ok K oK o Kok o Kok ok K ok sk ok ok

cluster.c - routines to cluster sequences
begin : Sun Dec 12 1999
copyright : Kevin Pedretti, Tom Casavant
email . pedretti@eng.uiowa.edu

***/

89

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mpi.h"
#include "uicluster.h"
#include "utils.h"
#include "options.h"
#include "fasta.h"
#include "cluster.h"
#include "compare.h"
#include "gsort.h"
#include "memory.h"
#include "bl2seq.h"

void cluster(int myRank, int nProcs, FILE * fd_fasta, FILE * fd_rej,
Options opts, Primary ** head, Primary * tail, int *nPrime,

int *nSecnd, int *nRepick, int *nOrphE, int *nReadptE,
int *nMatchRev, int *nSeqs, int *nRejects)

Primary *clhead; /* candidate list head */

Primary *tmpP; /* temporary pointer to a Primary */
FASTASeq *curC; /* current candidate */

Primary *curP; /# current primary */

GHTEntry_p *ght; /* global hash table */

GHTEntry *tmp; /* temporary variable */

int *cHashes; /* hashes for cur */

int *cIndexes; /* indexes for cur */

int nhashes; /* num hashes for cur */

char revC[MAXSLEN]; /* holds the reverse */

int *crHashes; /* hashes for revcomp of cur */

int *crIndexes; /* hashes for revcomp of cur */

int nrhashes; /* num hashes for revcomp of cur */
int iter = 0;

int hit; /* indicates if cur matched any primaries */
int status; /* stores return codes of function calls */
int i;

int stopSearch; /* boolean indicating if the primary search
should be stopped */

struct {

int score;
int rank;

} myBestHit, bestHit;

struct Hit_str allMyHits[10000];

struct Hit_str allHits[10000];

int clusID = 0;
MPI_Datatype MPI_HIT;

int *rcounts;

int *displs;

int matchLen,/* initial match length */

extLen,/* extended match length */

nerrors; /* num errors in match */

int topP, topC, nwrong, nmiss, ninsert;

int bestExtLen, bestTopP, bestTopC, bestHitDir, bestNErrors;

Primary *bestP;

FILE *hits; /* file containing list of candidates and the
primaries they match */

char hitsName[MAXFNAME] ;

int hitCount; /* the number of clusters an incoming seq
hits */

cHashes = (int *) emalloc(MAXSLEN * sizeof(int));
cIndexes = (int *) emalloc(MAXSLEN * sizeof(int));
crHashes = (int *) emalloc(MAXSLEN * sizeof(int));
crindexes = (int *) emalloc(MAXSLEN * sizeof(int));
nhashes = nrhashes = 0;

90

/* Define MPI_HIT datatype */
MPI_Type_contiguous(3, MPI_INT, &MPI_HIT);
MPI_Type_commit (&MPI_HIT) ;

/* Allocate rcounts and displs */

if (opts.keepGoing && (myRank == 0)) {
rcounts = (int *) malloc(nProcs * sizeof(int));
displs = (int #*) malloc(nProcs * sizeof(int));

}

/* initialize memory for the global hash table */
ght =
(GHTEntry_p *) ecalloc(ipower (4, opts.hashSize), sizeof (GHTEntry_p));

/* hash all of the already existing primaries */
if (*head != NULL) {
printf(" creating hashes for pre-existing primaries.\n");
tmpP = *head;
while (tmpP != NULL) {
nhashes =
hashSeq(tmpP->seq, opts.hashSize, opts.startSkip, opts.endSkip,
cHashes, cIndexes);
gsortWIndx((unsigned long) nhashes, cHashes - 1, cIndexes - 1);
tmpP->nHashes = nhashes;
tmpP->hashes = (int *) emalloc(nhashes * sizeof(int));
tmpP->indexes = (int *) emalloc(nhashes * sizeof(int));
for (i = 0; i < nhashes; i++) {
tmpP->hashes[i] = cHashes[i];
tmpP->indexes[i] = cIndexes[i];
addtoGHT (ght, tmpP, cHashes[i]);
}
tmpP = tmpP->next;
}
}

/* open a file for the list of candidates and the primaries they match */
if (opts.keepGoing && (myRank == 0)) {

strcpy(hitsName, opts.inFile);

strcat (hitsName, ".hits");

hits = fopen(hitsName, "w");

if (hits == NULL) {

eprintf("can’t open %s: ", hitsName);

}

}

/* allocate memory for curC */
curC = getFASTASeq();
curC->seq = (char *) emalloc(MAXSLEN * sizeof(char));

/* cluster each input seq one by one... */
status = readSeq(fd_fasta, curC, fd_rej, opts.rejCrit, *nRejects);
while (status !'= NO_MORE_SEQS) {

++(*nSegs) ;

if (status == REJECT_SEQ) {
++(*nRejects) ;

} else {

if (myRank == 0) {
if (iter % 100 == 0) {
printf("%d:%d.", iter, *nPrime);
fflush(stdout) ;
}
++iter;

}

if (opts.keepGoing && (myRank == 0)) {
/* print the current candidate name to the hits file */
fprintf(hits, "¥s ", curC->name);

}

nhashes =
hashSeq(curC->seq, opts.hashSize, opts.startSkip, opts.endSkip,
cHashes, cIndexes);

gsortWIndx((unsigned long) nhashes, cHashes - 1, cIndexes - 1);

clhead = NULL;
hit = NOHIT;
hitCount = 0;
bestExtLen = 0;

/* search the GHT with the forward hashes */
i=0;
stopSearch = FALSE;
while ((i < nhashes) && (stopSearch != TRUE)) {
if (cHashes[i] != FAILEDHASH) {
/* get the first link at entry i of the GHT */
tmp = ght[cHashes[i]];
while (tmp != NULL) {
curP = tmp->primary;
/* only check primary when it exactly hits the threshold */
/* prevents checking it more than once if keepGoing flag is on */
if (curP->nTouched == opts.hitThresh) {
matchLen =
compareSegs (opts.lenToMatch,
opts.lenToMatch - opts.errLimit, curP,
curC->seq, cHashes, cIndexes, nhashes,
opts.errLimit, opts.errLimit, opts.errLimit,
&topP, &topC, opts.wrongPen, opts.gapPen,
&nwrong, &nmiss, &ninsert);
if (matchLen >= (opts.lenToMatch - opts.errLimit)) {

extendMatch(curP->seq, curC->seq,
matchLen, opts.lenToMatch, opts.hashSize, 4,
opts.startSkip, opts.maskChar, opts.errLimit,
opts.errLimit, opts.errLimit, topP, topC,
opts.wrongPen, opts.gapPen, &nerrors, &extLen);

hit = FORWARD;

/* add the hit to the hit list */
allMyHits[hitCount].clusID = curP->cluslID;
allMyHits[hitCount].score = extlen;
allMyHits[hitCount] .dir = FORWARD;
++hitCount;

/* see if this is the best hit so far */
if (extLen > bestExtLen) {

bestExtLen = extlen;

bestTopP = topP;

bestTopC = topC;

bestHitDir = FORWARD;

bestNErrors = nerrors;

bestP = curP;
}

/* stop the search if the keepGoing flag is off */
if (opts.keepGoing == 0) {
stopSearch = TRUE;
}
}

}

if (curP->nTouched == 0) {
/* insert primary at head of candidate list */
curP->nextCP = clhead;
clhead = curP;

}

++(curP->nTouched) ;
tmp = tmp->next;
} /* end while (tmp != NULL) */
} /* end if (cHashes[i] != FAILEDHASH) */
++i; /* move on to next hash x/
} /* end while ((i < nhashes) && (stopSearch !=
TRUE)) */

/* check in the reverse direction if the tryRevC option is on and
either the extended search option is on or no hit has been found yet */
if (((opts.keepGoing == 1) && (opts.tryRevC == 1))
Il ((hit == NOHIT) && (opts.tryRevC == 1))) {
/* reset candidate list, zeroing touchcounts */
curP = clhead;
while (curP != NULL) {
curP->nTouched = 0;
curP = curP->nextCP;
}
clhead = NULL;

/* reverse compliment the input sequence */
strcpy(revC, curC->seq);
revComp (revC, strlen(revC));

/* generate and sort hashes for the reverse complement */
nrhashes =
hashSeq(revC, opts.hashSize, opts.startSkip, opts.endSkip,
crHashes, crlndexes);
gsortWIndx((unsigned long) nrhashes, crHashes - 1, crIndexes - 1);

/* search the GHT with the reverse hashes */
i=0;
stopSearch = FALSE;
while ((i < nrhashes) && (stopSearch !'= TRUE)) {
if (crHashes[i] != FAILEDHASH) {
/* get the first link at entry i of the GHT */
tmp = ght[crHashes[i]];
while (tmp != NULL) {
curP = tmp->primary;
/* only check primary when it exactly hits the threshold */
/* prevents checking it more than once if keepGoing flag is on */
if (curP->nTouched == opts.hitThresh) {
matchLen =
compareSegs (opts.lenToMatch,
opts.lenToMatch - opts.errLimit, curP,
revC, crHashes, crIndexes, nrhashes,
opts.errLimit, opts.errLimit,
opts.errLimit, &topP, &topC, opts.wrongPen,
opts.gapPen, &nwrong, &nmiss, &ninsert);
if (matchLen >= (opts.lenToMatch - opts.errLimit)) {

extendMatch(curP->seq, revC,
matchLen, opts.lenToMatch, opts.hashSize, 4,
opts.startSkip, opts.maskChar, opts.errLimit,
opts.errLimit, opts.errLimit, topP, topC,
opts.wrongPen, opts.gapPen, &nerrors,
&extLen);

hit = REVCOMP;

/* add the hit to the hit list */
allMyHits[hitCount].clusID = curP->clusID;
allMyHits[hitCount].score = extlLen;
allMyHits[hitCount] .dir = REVCOMP;
++hitCount;

/* see if this is the best hit so far */
if (extLen > bestExtLen) {

bestExtLen = extLlen;

bestTopP = topP;

bestTopC = topC;

bestHitDir = REVCOMP;

bestNErrors = nerrors;

bestP = curP;
}

/* stop the search if the keepGoing flag is off */
if (opts.keepGoing == 0) {
stopSearch = TRUE;
}
}
}

if (curP->nTouched == 0) {
/* insert primary at head of candidate list */
curP->nextCP = clhead;
clhead = curP;

}

++(curP->nTouched) ;
tmp = tmp->next;
} /* end while (tmp != NULL) */
} /* end if (crHashes[i] !'= FAILEDHASH) */
++i; /* move on to next hash */
} /* end while ((i < nrhashes) && (stopSearch
!= TRUE)) */
}

/* figure out what my best hit is */
if (hitCount > 0) {
/* sort the hit list by score */
sortHitList(allMyHits, hitCount);

/* best hit will be at position 0 */
myBestHit.score = allMyHits[0].score;
} else {
myBestHit.score = 0;
}
myBestHit.rank = myRank;

/* communicate the best hit to all procs */
MPI_Allreduce(&myBestHit, &bestHit, 1, MPI_2INT, MPI_MAXLOC,
MPI_COMM_WORLD) ;

if (bestHit.score == 0) { /* cur is a new primary */
++(*nPrime) ;

/* check if this proc should get assigned this cluster */
if ((*nPrime % nProcs) == myRank) {
addPrimary(clusID, curC, head, &tail, cHashes, cIndexes, nhashes,
ght, opts.vPrimary);
++cluslID;

95

}

/* master proc writes to hits file if keepGoing flag is on */
if ((myRank == 0) && (opts.keepGoing == 1)) {
fprintf(hits, "NO HITS\n");
}
} else { /* cur gets added someplace */
++(*nSecnd) ;

/* gather a list of all hits to the master proc if the keepGoing flag
is on */
if (opts.keepGoing) {
/* gather list of all hits to root node to put in the hits file */
MPI_Gather(&hitCount, 1, MPI_INT, rcounts, 1, MPI_INT, O,
MPI_COMM_WORLD) ;
if (myRank == 0) {
displs[0] = 0;
for (i = 1; i < nProcs; i++) {
displs[i] = displs[i - 1] + rcounts[i - 1];
}
}
MPI_Gatherv(allMyHits, hitCount, MPI_HIT, allHits, rcounts,
displs, MPI_HIT, 0, MPI_COMM_WORLD);

/* only master proc writes to the file */

if (myRank == 0) {
int nAllHits = displs[nProcs - 1] + rcounts[nProcs - 1];
/* sort the hit list before writing it */
sortHitList(allHits, nAllHits);

for (i = 0; i < nAllHits; i++) {
fprintf (hits, "%d.%d:", allHits[i].clusID, allHits[i].score);
if (allHits[i].dir == FORWARD) {
fprintf (hits, "f ");
} else {
fprintf (hits, "r ");
}
¥
fprintf(hits, "\n");
}
}

/* add the input sequence to the cluster it hit the best */
if (bestHit.rank == myRank) {
addSecondary(curC, bestP, bestTopP, bestTopC, bestExtLen,
bestNErrors, bestHitDir, opts.repick, opts.vPrimary,
ght, cHashes, cIndexes, nhashes, opts, nRepick,
n0rphE, nReadptE);
// addSecondary(curC, curP, topP, topC, extlLen, nerrors, hit,
// opts.repick, opts.vPrimary, ght, cHashes, cIndexes, nhashes,
// opts,
// nRepick, nOrphE, nReadptE);

}

/* Reset candidate list */
curP = clhead;
while (curP != NULL) {
curP->nTouched = 0;
curP = curP->nextCP;

}

} /* end if (status !'= REJECT_SEQ) */

96

/* read the next input sequence */
status = readSeq(fd_fasta, curC, fd_rej, opts.rejCrit, *nRejects);
} /* end main clustering loop */

}

void addPrimary(int clusID, FASTASeq * new, Primary ** head,
Primary ** tail, int hashes[], int indexes[], int nhashes,
GHTEntry_p ght[], int vPrimary)

{

int i;

Primary *p = getPrimary();

p->clusID = clusID;

p->name = (char *) emalloc((strlen(new->name) + 1) * sizeof(char));
p->seq = (char *) emalloc((strlen(new->seq) + 1) * sizeof(char));
strcpy (p->name, new->name);

strcpy(p->seq, new->seq);

/* only do the following only if virtual primary option is enabled */
if (vPrimary == 1) {

/* vp starts out as seq of first sequence added */

p->vp = (char *) emalloc((strlen(p->seq) * 2) + 1);

strcpy(p->vp, p->seq);

p->vplen = strlen(p->seq);

p->maxvplLen = strlen(p->seq) * 2;

p->nFrontExt = 0;

p->nTailExt = 0;

p->nBothExt = 0;

p->nlnternal = 0;

p->nProblems = 0;

p->tovp = INTERNAL;

}
p->hashes = (int *) emalloc(nhashes * sizeof(int));
p->indexes = (int *) emalloc(nhashes * sizeof(int));

/* enter the hashes into the GHT */

for (i = 0; i < nhashes; i++) {
p->hashes[i] = hashes[i];
p->indexes[i] = indexes[i];
addtoGHT (ght, p, hashes[il);

}

/* initialize variables in primary structure */
p->nHashes = nhashes;

p->nSecondaries = 0;

p->nTouched = 0;

p->headS = NULL;

p->nextCP = NULL;

p->next = NULL;

/* Add primary to the main primary list */
if (xhead != NULL) {
(*tail)->next = p;

*tail = p;
} else {
*head = *tail = p;
}
}

void addSecondary(FASTASeq * new, Primary * p,
int iP, int iS, int matchLen, int errors, int dir,
int repick, int vPrimary, GHTEntry_p ght[], int hashes[],
int indexes[], int nhashes, Options opts, int *nRepick,

int *nOrphanE, int *nReadptE)

Secondary *tmpS;

Secondary *s = getSecondary();
int len0Old, lenNew;

int i;

char strTmp[MAXSLEN];

int nlhashes;

int *cHashes;

int *cIndexes;

int lmatchLen;

int topP, topC, nwrong, nmiss, ninsert;
int nerrors;

int extlen;

bl2seq_hit bl2Hits[1000];

int nbl2Hits;

++(p->nSecondaries) ;
s->next = p->headS5;
p->headS = s;

/* determine if the secondary should become the primary for the cluster */
if (repick) {

len0ld = countBases(p->seq);

lenNew = countBases(new->seq);

}

if (lenNew > len0ld) {
/* repick */
++(*nRepick) ;

s->name = p->name;
s->seq = p->seq;
s->iP = 0;

s->iS = 0;
s->matchlLen = 0;
s->score = 0.0;
s->dir = FORWARD;

p->name = (char *) emalloc((strlen(new->name) + 1) * sizeof(char));
p->seq = (char *) emalloc((strlen(new->seq) + 1) * sizeof(char));
strcpy (p->name, new->name);

strcpy(p->seq, new->seq);

if (vPrimary == 0) {
/* remove old primary from ght */
for (i = 0; i < p->nHashes; i++) {
remfromGHT (ght, p, p->hashes[i]);
}
free(p->hashes);
free(p->indexes);

/* add the new primaries hashes to the ght */
p->hashes = (int #*) emalloc(nhashes * sizeof(int));
p->indexes = (int *) emalloc(nhashes * sizeof(int));
for (i = 0; i < nhashes; i++) {

p->hashes[i] = hashes[i];

p->indexes[i] = indexes[i];

addtoGHT(ght, p, hashes[i]);

p->nHashes = nhashes;

/* recluster all of the secondaries */
cHashes = (int *) emalloc(MAXSLEN * sizeof(int));

cIndexes = (int *) emalloc(MAXSLEN * sizeof(int));
tmpS = p->headS;
for (i = 0; i < p->nSecondaries; i++) {
if (tmpS->dir == FORWARD) {
strcpy (strTmp, tmpS->seq);
} else {
strcpy(strTmp, tmpS->seq);
revComp(strTmp, strlen(strTmp));
}

nlhashes =
hashSeq(strTmp, opts.hashSize, opts.startSkip, opts.endSkip,
cHashes, cIndexes);
gsortWIndx((unsigned long) nlhashes, cHashes - 1, cIndexes - 1);
matchLen = topP = topC = 0;
nwrong = nmiss = ninsert = 0;

lmatchLen =
compareSeqs (opts.lenToMatch, opts.lenToMatch - opts.errLimit,
p, strTmp, cHashes, cIndexes, nlhashes,
opts.errLimit, opts.errLimit, opts.errLimit, &topP,
&topC, opts.wrongPen, opts.gapPen, &nwrong, &nmiss,
&ninsert);

if (lmatchLen >= (opts.lenToMatch - opts.errLimit)) {
nerrors = extLen = 0;
extendMatch(p->seq, strTmp,
ImatchLen, opts.lenToMatch, opts.hashSize, 4,
opts.startSkip, opts.maskChar, opts.errLimit,
opts.errLimit, opts.errLimit, topP, topC,
opts.wrongPen, opts.gapPen, &nerrors, &extLen);

/* Update the match info */
if ((tmpS->score == 0) && (i '= 0))

++(*nReadptE) ;
tmpS->iP = topP;
tmpS->iS = topC;
tmpS->score =

(((double) (lmatchLen - nerrors)) / lmatchLen) * 100.0;

tmpS->matchLen = extLen;

} else {
++(*n0rphanE) ;
tmpS->iP = 0;
tmpS->iS = 0;

tmpS->score = 0;
tmpS->matchlLen = 0;
}

tmpS = tmpS->next;
}
free(cHashes) ;
free(cIndexes);
} /* end if (vPrimary == 0) */
} else {
/* no repick, add secondary */
s->name = (char *) emalloc((strlen(new->name) + 1) * sizeof(char));
s->seq = (char *) emalloc((strlen(new->seq) + 1) * sizeof(char));
strcpy(s->name, new->name);
strcpy(s->seq, new->seq);

s->iP = iP;
if (dir == FORWARD)
s->15 = 1iS;

98

99

else
s->iS = strlen(s->seq) - iS;
s->matchlLen = matchLen;
if (dir == REVCOMP)
s->matchlLen *= -1;

s->score = (((double) (matchLen - errors)) / matchLen) * 100.0;
s->dir = dir;

}

/* Try to extend the vp */
if (vPrimary == 1) {

int seqlen = strlen(s->seq);

int lag = 4; /* acceptable error for overlaps */

int maxMultiHit = 40; /* maximum length in bases of non-best hits
before * sequence is considered a

"problem" */

int minBestHitLen = 50; /* minimum length of a best hit in order to
extend vp */

int done = FALSE;

int ext = FALSE;

/* call bl2seq. returns sorted hit list and number of hits */
bl2seq(p->vp, p->vplen, s->seq, seqlen, bl2Hits, &nbl2Hits);

if (nbl2Hits > 0) {
if (nbl2Hits > 1) {
/* There was more than one hit */
int len0f2Hit = bl2Hits[1].ebl - bl2Hits[1].sbi;
if (lenOf2Hit > maxMultiHit) {
++(p->nProblems) ;
done = TRUE;
}
}

if (done == FALSE) {
/* see if the vp can be extended */
/* best hit will be in b12Hits[0] */
int sbl = bl2Hits[0].sbl; /* start base in vp */

int sb2 = bl2Hits[0].sb2; /* start base in new seq */

int ebl = bl2Hits[0].ebl; /* end base in vp */

int eb2 = bl2Hits[0].eb2; /* end base in new seq */

int dir = b12Hits[0].dir; /* direction of hit -- see bl2seq.c */
int lenl = p->vplen; /* current length of the vp */

int len2 = seqlen; /* length of the new sequence */

int lenOfHit = ebl - sbl; /* len of the best hit */
int ff1 = sbl; /* front fringe */

int efl lenl - ebl - 1; /* end fringe */

int f£f2 = sb2;

int ef2 = len2 - eb2 - 1;

if ((lenOfHit > minBestHitLen) && (dir == PP)) {
/* Check for internal hit */
if ((££2 < lag) &k (ef2 < lag)) {
/* hit identified as internal */
++(p->nlnternal);

else if ((ff1 < lag) && (efl < lag) && (£ff2 > lag)
&& (ef2 > lag)) {
/* hit identified to extend vp on both front and end */
++(p->nBothExt) ;
ext = TRUE;
if (len2 > p->maxvplen) {
free(p->vp);

100

p->maxvplLen = len2 * 2;

p->vp = (char *) emalloc(p->maxvpLen);
}
p->vpLen = len2;

/* new sequence becomes new vp */
strcpy(p->vp, s->seq);
} else if ((efl < lag) && (£ff2 < lag) && (ef2 > lag)) {
/* hit identified to extend tail of vp */
int sb; /* base to start copying at */
int lenApp; /* length of appended region */

++(p->nTailExt);

ext = TRUE;

sb = eb2 + (lenl - ebl);
lenApp = strlen(s->seq + sb);

/* allocate more space for vp if necessary */
if (lenl + lenApp) {
p->maxvplen = (lenl + lenApp) * 2;
p->vp = erealloc(p->vp, p->maxvpLen);
}
strcpy(p->vp + lenl, s->seq + (eb2 + (lenl - ebl)));
} else if ((£ff1 < lag) && (ef2 < lag) && (£f£2 > lag)) {
/* hit identified to extend front of vp */
int sb; /* base to start copying at */
int lenApp; /* length of appended region */

++(p->nFrontExt) ;
ext = TRUE;
sb = sb2 - sbi;
lenApp = sb2 - sbl;
/* allocate more space for vp if necessary */
if (lenl + lenApp) {
p->maxvpLen = (lenl + lenApp) * 2;
p->vp = erealloc(p->vp, p->maxvpLen);
}
/* shift current vp to right */
memmove (p->vp + lenApp, p->vp, lenl + 1);
memcpy (p->vp, s->seq, lenApp);
} else {
/* problem hit */
++(p->nProblems) ;
}

/* if extention was made, remove old hashes from GHT * and add new
hashes to it */

if (ext == TRUE) {
int *newHashes = (int *) emalloc(MAXSLEN * sizeof(int));
int *newIndexes = (int *) emalloc(MAXSLEN * sizeof(int));

/* remove old primary from ght */

for (i = 0; i < p->nHashes; i++) {
remfromGHT (ght, p, p->hashes[i]);

}

free(p->hashes);

free(p->indexes);

/* add the new vps hashes to the ght */
p->nHashes =
hashSeq(p->vp, opts.hashSize, opts.startSkip, opts.endSkip,
newHashes, newIndexes);
gsortWIndx((unsigned long) p->nHashes, newHashes - 1,
newIndexes - 1);
p->hashes = (int *) emalloc(p->nHashes * sizeof(int));

p->indexes = (int *) emalloc(p->nHashes * sizeof(int));
for (i = 0; i < (p->nHashes); i++) {
p->hashes[i] = newHashes[i];
p->indexes[i] = newIndexes[i];
addtoGHT(ght, p, newHashes[i]);
}
free(newHashes) ;
free(newIndexes);
¥
} else {
printf("best hit dir = %d\n", dir);
printf("len of hit = %d\n", lenOfHit);

}
}
} else {
/* There were no bl2seq hits */
printf("THIS SHOULD NEVER HAPPEN\n");
}
¥
}

void addtoGHT(GHTEntry_p * ght, Primary * primary, int hash)

{
GHTEntry *tmp;

if (hash != FAILEDHASH) {
if (ght[hash] != NULL) {
if (ght[hash]->primary != primary) {
/* The primary isn’t in the list. Always insert at head. */
tmp = getGHTEntry();
tmp->primary = primary;
tmp->next = ght[hash];
ght[hash] = tmp;
}
} else {
ght [hash] = getGHTEntry();
ght [hash]->primary = primary;
ght [hash]->next = NULL;
}
}
}

void remfromGHT(GHTEntry_p * ght, Primary * primary, int hash)

{
GHTEntry *tmp, *last = NULL;

if (hash != FAILEDHASH) {
tmp = ght[hash];
while (tmp !'= NULL) {
if (tmp->primary == primary) {
if (last == NULL) {
ght [hash] = tmp->next;
} else {
last->next = tmp->next;

}
return;
}
last = tmp;
tmp = tmp->next;

}
}
}

101

int hashSeq(char *seq, int hs, int ss, int es, int hsh[], int idx[])
{

int len; /* holds length of seq */

int i, j; /* standard counters */

int h; /* the current hash is built in h */

int nhashes = 0; /* num hashes generated counter */

len = strlen(seq);
for (i = ss; 1 < (len - es); i++) {
if (i < (len - (hs - D)) {
/* Calculate the hash for this base */
h = j = 0; /* initialize hash and loop counter */
while ((j < hs) && (h !'= FAILEDHASH)) {
if (seql[i + j] == ’A’) {
h += (A * ipower(4, j));
} else if (seq[i + j]l == ’C’) {
h += (C * ipower(4, j));
} else if (seq[i + jl == °G’) {
h += (G * ipower(4, j));
} else if (seq[i + j] == ’T’) {
h += (T * ipower(4, j));
} else {
h = FAILEDHASH;
}
++j;
}
hsh[i - ss] = h;
idx[i - ss] =
++nhashes;

}

I
.

}
return (nhashes);

}

int compareSeqs(int iLengthToMatch, int iGoodScore,
Primary * curP_p, char *strCSeq,

int *iaCHashes, int *iaCIndexes, int iCNumHashes,

int wronglLimit, int gapLimit, int wrongOrGapLimit,

int *topPIndex, int *topClndex,

int iWrongPenalty, int iGapPenalty,

int *nFoundWrong, int *nFoundMissing, int *nFoundInserted)

{

int topScore, score;
int iP, iC, iCStart;
int iPNumHashes;

int iPSeqLen, iCSeqlLen;
int i, numMasked;

iP = iC = 0;

while (curP_p->hashes[iP] == FAILEDHASH)
iP++;

while (iaCHashes[iC] == FAILEDHASH)
iC++;

iPNumHashes = curP_p->nHashes;
iPSeqlen = strlen(curP_p->seq);
iCSeqlen = strlen(strCSeq);

// printf("numHashesP = %d, numHashesC = %d\n", iPNumHashes, iCNumHashes);

topScore = score = 0;
while ((iP < iPNumHashes) && (iC < iCNumHashes)) {

if (curP_p->hashes[iP] == iaCHashes[iC]) {
iCStart = iC;

102

while ((curP_p->hashes[iP] == iaCHashes[iC]) && (iP <= iPNumHashes)) {

while ((curP_p->hashes[iP] == iaCHashes[iC])
&% (iC <= iCNumHashes)) {
if ((curP_p->indexes[iP] <= (iPSeqlLen - iLengthToMatch))
&& (iaCIndexes[iC] <= (iCSeqlen - ilLengthToMatch))) {

/* Only call score match if the match has the potential to be
more left than the previous best match */

if (
((curP_p->indexes[iP] + iaCIndexes[iC]) <
(*topPIndex + *topCIndex)) || (topScore == 0)) {

/* Only call score match if there are not more than wrongLimit
masked characters in a iLengthToMatch Region */
numMasked = 0;
for (i = iaCIndexes[iC];
i < (iaCIndexes[iC] + iLengthToMatch); i++) {
if (strCSeqlil == ’X’)
++numMasked;

}
if (numMasked <= wrongLimit) {

score = ScoreMatch(curP_p->seq, curP_p->indexes[iP],
strCSeq, iaCIndexes[iC], iLengthToMatch,
wrongLimit, gapLimit, wrongOrGapLimit,
iWrongPenalty, iGapPenalty, 0,/* recursiveFlag
*/
nFoundWrong, nFoundMissing,
nFoundInserted);

if (score >= iGoodScore) {
topScore = score;
*topPIndex = curP_p->indexes[iP];
*topCIndex = iaCIndexes[iC];

}
}
¥
}
iC++;
}
iC = iCStart;
iP++;
}
} else { /* the hashes dont match */
if (curP_p->hashes[iP] > iaCHashes[iC]) {
iC++;
} else {
iP++;
}

}
} /* end while !foundCluster && iP && iC */

return (topScore);

}

void writeClusters(FILE * fd, Primary * head, int bpl, int *nOrph,
char *inFiles[], int div[], int nCF, int vPrimary)
{
Primary *p;
Secondary *s;
int orph;
int nblanks = 1; /* num blank lines to put between sequences */

103

104

int i, j;
FILE *fd_out;
char newCF[MAXFNAME + 1];

p = head;
orph = 0;

/* write new versions of previously clustered files */
if (nCF > 0) {

j=0;

for (i = 0; i < nCF; i++) {

if (strlen(inFiles[i]) > (MAXFNAME - 5)) {
eprintf(" output filename too long.\n");

}
strcpy(newCF, inFiles[il);
strcat(newCF, ".out");

printf(" Writing %s...\n", newCF);
fd_out = fopen(newCF, "wc");
if (fd_out == NULL)

eprintf("can’t open %s:", newCF);

while (j < div[il) {
fprintf(fd_out, "OP: %s %d\n", p->name, p->clusID);
printSeq(fd_out, p->seq, bpl, nblanks);
if (vPrimary == 1) {
fprintf(fd_out, "@VP: %d %d %d %d %d\n", p->nInternal,
p->nBothExt, p->nFrontExt, p->nTailExt, p->nProblems);
printSeq(fd_out, p->vp, bpl, nblanks);
}
s = p->headS;
while (s != NULL) {
fprintf(fd_out, "@S: %s %d %d %d %f ", s->name, s->iP, s->iS,
s->matchLen, s->score);
if (s->dir == FORWARD)
fprintf(fd_out, "%s", "FORWARD ");
else
fprintf(fd_out, "%s", "REVCOMP ");
if (s->score == 0) {
fprintf(fd_out, "¥s", "ORPHAN");
++orph;
¥
fprintf(fd_out, "\n");
printSeq(fd_out, s->seq, bpl, nblanks);
s = s->next;

}

P = p->next;

++j;
}
fclose(fd_out);

}
}

while (p !'= NULL) {

fprintf(fd, "@P: %s\n", p->name);

printSeq(fd, p->seq, bpl, nblanks);

if (vPrimary == 1) {
fprintf(fd, "@VP: %d %d %d %d %d\n", p->nlInternal, p->nBothExt,
p->nFrontExt, p->nTailExt, p->nProblems);
printSeq(fd, p->vp, bpl, nblanks);

}

s = p->headS;
while (s != NULL) {
fprintf(fd, "@S: %s %d %d %d %f ", s->name, s->iP, s->iS,
s->matchlLen, s->score);
if (s->dir == FORWARD)
fprintf(£fd, "%s", "FORWARD ");
else
fprintf (£fd, "%s", "REVCOMP ");
if (s->score == 0) {
fprintf (£fd, "%s", "ORPHAN");
++orph;
}
fprintf (£fd, "\n");
printSeq(fd, s->seq, bpl, nblanks);
s = s->next;

}
P = p->next;
}
*n0rph = orph;
}

/* simple insertion sort to sort hit list */
void sortHitList(Hit_p hits, int nHits)
{

int i;

Hit_p a = hits;

int 1 = 0;

int r = nHits - 1;

for (i =r; i >1; i--) {
if (al[i].score > al[i - 1].score) {
Hit t = al[i - 1];

ali - 1] = a[il;
ali] = t;
}
¥
for (i =1+ 2; i <=1; i++) {
int j = i;
Hit v = al[il;
while (v.score > a[j - 1].score) {
aljl = alj - 11;
i=
¥
aljl = v;
¥
}

A.2.3 compare.c
[ok sk sk o ok k sk ok ok o ok ok sk ok ok o ok koK ok ok ok o o kK ok ok ok ok o o kK K ok ok o ok o ok kK sk ok ok ok o o ok ok ok Kok ok ok o ok ok K Kok ok ok o o kK ok Kok ok ok
compare.c - routines to compare sequences

begin : Mon Dec 13 1999
author : Tom Casavant, modified by Kevin Pedretti
email : pedretti@eng.uiowa.edu

***/

#include <stdio.h>
#include <stdlib.h>
#include "uicluster.h"
#include "options.h"
#include "fasta.h"
#include "cluster.h"
#include "compare.h"

105

106

#include "utils.h"

int ScoreMatch(char *strPattern, int strPatternlIndex,
char *strSubject, int strSubjectlIndex,
int iLengthToMatch,
int iWrongLimit, int iGapLimit, int iWrongOrGapLimit,
int iWrongPenalty, int iGapPenalty,
int iRecursiveFlag,
int *nWrong_p, int *nMissing_p, int *nlInserted_p)

int _iScore, _iMissingScore, _iWrongScore, _ilnseredScore;
static int iLocalWrong, ilLocalMissing, iLocallnserted;

/* Initialize x/

if (!iRecursiveFlag) {
iLocalWrong = iLocalMissing = iLocallnserted = 0;
*nWrong_p = iWrongLimit;
*nMissing_p = *nlnserted_p = iGapLimit;

}

if ((iLengthToMatch == 0) || (iLocalWrong > iWrongLimit)
Il ((iLocalMissing + iLocallnserted) > iGapLimit)
Il ((iLocalMissing + iLocallnserted + ilocalWrong) >
iWrongOrGapLimit)) {
/* base of recursion */
if ((iLengthToMatch == 0) && (ilLocalWrong <= iWrongLimit)
&& ((iLocalMissing + iLocallnserted) <= iGapLimit)
&% ((iLocalMissing + iLocallnserted + iLocalWrong) <=
iWrongOrGapLimit)) {
if ((iLocalWrong + iLocalMissing + iLocallnserted) <
((*nMissing_p) + (*nInserted_p) + (*nWrong_p))) {
*nWrong_p = ilocalWrong;
*nMissing_p = iLocalMissing;
*nInserted_p = ilocallnserted;
}
_iScore = 0;
return (_iScore);
} else {
_iScore = 0;
return (_iScore);

}
} else { /* recursion */
if (strPattern[strPatternIndex] == strSubject[strSubjectIndex]) {

_iScore =
1 + ScoreMatch(strPattern, strPatternIndex + 1, strSubject,
strSubjectIndex + 1, iLengthToMatch - 1,
iWrongLimit, iGapLimit, iWrongOrGapLimit,
iWrongPenalty, iGapPenalty, TRUE,/* iRecursiveFlag
*/
nWrong_p, nMissing_p, nInserted_p);
return (_iScore);
} else { /* test for a possible missing, inserted or
wrong base */
iLocalWrong += iWrongPenalty;
_iWlrongScore =
ScoreMatch(strPattern, strPatternIndex + 1, strSubject,
strSubjectIndex + 1, ilLengthToMatch - 1, iWrongLimit,
iGapLimit, iWrongOrGapLimit, iWrongPenalty,
iGapPenalty, TRUE,/* iRecursiveFlag */
nWrong_p, nMissing_p, nInserted_p);
iLocalWrong -= iWrongPenalty;
iLocalMissing += iGapPenalty;
_iMissingScore =

Sco

Sco

&&

_iSco

if (_
_is
} els
_is
}

}
Y/
} /%

stati
stati
stati
stati

void
int
int
int
int
int
int

int
int
int
int
int
int
int
int
int

reMatch(strPattern, strPatternIndex + 1, strSubject,
strSubjectIndex, iLengthToMatch - 1, iWrongLimit,
iGapLimit, iWrongOrGapLimit, iWrongPenalty,
iGapPenalty, TRUE,/* iRecursiveFlag */
nWrong_p, nMissing_p, nInserted_p);

iLocalMissing -= iGapPenalty;

iLocallnserted += iGapPenalty;

_iInseredScore =
reMatch(strPattern, strPatternIndex, strSubject,
strSubjectIndex + 1, ilLengthToMatch, iWrongLimit,
iGapLimit, iWrongOrGapLimit, iWrongPenalty,
iGapPenalty, TRUE,/* iRecursiveFlag */
nWrong_p, nMissing_p, nInserted_p);

iLocallnserted -= iGapPenalty;

if ((_iWrongScore >= _iMissingScore)

(_iWrongScore >= _ilInseredScore)) {
re = _ilWlrongScore;
} else {
iMissingScore >= _ilnseredScore) {
core = _iMissingScore;
e { /* (_iInseredScore > _iMissingScore) */
core = _ilnseredScore;
}

return (_iScore);

* end of recursion subcase */
end of ScoreMatch */

¢ int *tmpCHashPrefix = NULL;
¢ int *tmpCHashPrefixIndex = NULL;
¢ int *tmpPHashPrefix = NULL;
¢ int *tmpPHashPrefixIndex = NULL;

extendMatch(char *pSeq, char *cSeq,

topScore, int lengthToMatch, int hashSize,
radix, int skip, char maskedChar,

wrongLimit, int gapLimit, int wrongOrGapLimit,
topPIndex, int topCIndex,

wrongPenalty, int gapPenalty,

*totalErrors, int *bestLength)

growTryLength;

minGrowWindowC, minGrowWindowP, growWindowC, growWindowP;
numCHashes, numPHashes;

growing, foundGrowStart;

maskedIndex;

prevCandPIndex, prevCandCIndex, candCIndex, candPIndex;
score;

nFoundWrong, nFoundMissing, nFoundInserted;
growWrongLimit, growGapLimit, growWrongOrGapLimit = 0;

*totalErrors = lengthToMatch - topScore;

107

108

/* Then we found a Primary that matched the current Candidate. The *
approach is to try to append regions of lengthToMatch until the end * of
one sequence or until a shorter segment has to be appended. This * can
heppen for several reasons: a) the one sequence or the other is * too
short, b) the hases are -1 in the end of the region most * recently
appended, or c) the new overlapping region is shorter * than the
attempted length being appended. To do this we have to * re-sort the
hashes according to index instead of by hash value. We * use a couple of
tmp arrays to hold these indices. */

if (tmpPHashPrefix == NULL) {
tmpPHashPrefix = (int *) emalloc(MAXSLEN * sizeof(int));
tmpCHashPrefix = (int *) emalloc(MAXSLEN * sizeof(int));
tmpPHashPrefixIndex = (int *) emalloc(MAXSLEN * sizeof(int));
tmpCHashPrefixIndex = (int *) emalloc(MAXSLEN * sizeof(int));

}

numPHashes =
hashSeq(pSeq, hashSize, skip, 0, tmpPHashPrefix,
tmpPHashPrefixIndex);

numCHashes =
hashSeq(cSeq, hashSize, skip, 0, tmpCHashPrefix,
tmpCHashPrefixIndex);

growing = TRUE;

*bestLength = topScore;
prevCandPIndex = -1;

prevCandCIndex = -1;

candCIndex = topCIndex + *bestLength;
candPIndex = topPIndex + *bestLength;

/* This is the main loop which continues to add segments as * long as the
previous segment added was of maximum length. * As soon as the attempted
length to be added is shorter than * the maximum length (lengthToMatch)
we set the growing flag * to FALSE. Note, that this is initially true
before entering * this loop and that there are many ways that growth can
end. * It is important that in each clause below, if an action is *
taken or condition detected, that indicates that further * growth will
not be possible after trying to match the * current segment, we have to
set the growing flag to FALSE. x/

while (growing) {

/* Now we must bound the new attempted growth region by the * length of
the shorter of the two sequences */

growTryLength = lengthToMatch;

if ((candCIndex + growTryLength) > strlen(cSeq)) {
growTryLength = strlen(cSeq) - candCIndex;
growing = FALSE;

}

if ((candPIndex + growTryLength) > strlen(pSeq)) {
growTryLength = strlen(pSeq) - candPIndex;
growing = FALSE;

}

/* Now the maximum length of the attempted growth region is * determined.
Next we have to determine the starting * position in the currently
grown region to begin the * extension. This is done by comparing the
hash values in the * region just before the end of the previous
segment to have * been appended. HOWEVER, before that, we must make
sure we * arent comparing FAILED_HASH values. The first segment of *
code below scans backward over the FAILE_DHASH values, and * the
second segment looks backward from there for a hash * match. The first
block may result in setting growing to * FALSE. The second block may

109

not. */

/* First block: Find the non-failed hashes region */
minGrowWindowC = 0;
while ((minGrowWindowC < growTryLength)
&% (tmpCHashPrefix[candCIndex - skip - minGrowWindowC] ==
FAILEDHASH)) {
minGrowWindowC++;
}
minGrowWindowP = 0;
while ((minGrowWindowP < growTryLength)
&& (tmpPHashPrefix[candPIndex - skip - minGrowWindowP] ==
FAILEDHASH)) {
minGrowWindowP++;

}

if ((minGrowWindowC > 0) || (minGrowWindowP > 0)) {
growing = FALSE;
¥

/* Now find the first matching non-failed hash */

/* The next 2 lines are needed in case the first loop is never *
executed. For instance, if the hashes match right away * -- which
"should" be common */

growWindowP = minGrowWindowP;

growWindowC = minGrowWindowC;

foundGrowStart = (tmpCHashPrefix[candCIndex - skip - growWindowC]

== tmpPHashPrefix[candPIndex - skip - growWindowP]);

for (growWindowC = minGrowWindowC;

(growWindowC < growTryLength) && (!foundGrowStart); growWindowC++) {
for (growWindowP = minGrowWindowP;

(growWindowP < growTryLength) && (!foundGrowStart);

growWindowP++) {
foundGrowStart = (tmpCHashPrefix[candCIndex - skip - growWindowC]
== tmpPHashPrefix[candPIndex - skip -

growWindowP]) ;

} /* end for growWindowP */
} /* end for growWindowC */

candCIndex -= growWindowC;
candPIndex -= growWindowP;

/* Now we safeguard that we don’t have a pathological case in which * the
new candidate site is identical to the previous one with just * enough
errors in the previous grow region to make them look * different */

if ((prevCandPIndex == candPIndex) || (prevCandCIndex == candCIndex)) {
foundGrowStart = FALSE;
} else {

prevCandPIndex = candPIndex;
prevCandCIndex = candCIndex;

}

if (foundGrowStart) {

growWrongLimit =

((double) wrongLimit / (double) lengthToMatch) *

(double) growTryLength;
growWronglimit = min2((growWrongLimit + 1), (growTryLength - 1));
growGapLimit =

((double) gapLimit / (double) lengthToMatch) *

(double) growTryLength;
growGapLimit = min2((growGapLimit + 1), (growTryLength - 1));
growWrongOrGapLimit =

((double) wrongQOrGapLimit / (double) lengthToMatch) *

(double) growTryLength;

110

growWrongOrGapLimit =
min2((growWrongOrGapLimit + 1), (growTryLength - 1));

score = ScoreMatch(pSeq, candPIndex, cSeq, candCIndex, growTryLength,
growWrongLimit, growGapLimit, growWrongOrGapLimit,
wrongPenalty, gapPenalty, FALSE,/* recursiveFlag
*/
&nFoundWrong, &nFoundMissing, &nFoundInserted);

} else {

growTryLength = 0;

growing = FALSE;

score = 0;

}

if ((score > 0) && (score < (growTryLength - growWrongOrGapLimit))) {
growing = FALSE;
while (score < (growTryLength - growWrongOrGapLimit)
&& (growTryLength > 1)) {
growTryLength--;
growWrongLimit =
((double) wrongLimit / (double) lengthToMatch) *
(double) growTryLength;
growWronglimit = min2((growWrongLimit + 1), (growTryLength - 1));
growGapLimit =
((double) gapLimit / (double) lengthToMatch) *
(double) growTryLength;
growGapLimit = min2((growGapLimit + 1), (growTryLength - 1));
growWrongOrGapLimit =
((double) wrongOrGapLimit / (double) lengthToMatch) *
(double) growTryLength;
growWrongOrGapLimit =
min2((growWrongOrGapLimit + 1), (growTryLength - 1));

score =
ScoreMatch(pSeq, candPIndex, cSeq, candCIndex, growTryLength,
growWrongLimit, growGapLimit, growWrongOrGapLimit,
wrongPenalty, gapPenalty, FALSE,/* recursiveFlag */
&nFoundWrong, &nFoundMissing, &nFoundInserted);
}
}

*bestLength += (growTryLength - max2(growWindowC, growWindowP));
// printf("Best Length: %d\n", *bestLength);

*totalErrors += (growTryLength - score);
candCIndex += (growTryLength - growWindowC) ;
candPIndex += (growTryLength - growWindowP);

maskedIndex = 0;

while ((cSeq[candCIndex + maskedIndex] == maskedChar)

& (pSeql[candPIndex + maskedIndex] == maskedChar)) {
maskedIndex++;

}

if ((maskedIndex > 0)

&& (cSeql[candCIndex + maskedIndex] ==

pSeqlcandPIndex + maskedIndex])) {
candCIndex += maskedIndex;
candPIndex += maskedIndex;
*bestLength += maskedIndex;

}

if ((cSeql[candCIndex] == ’\0’) || (pSeql[candPIndex] == ’\0’)) {
growing = FALSE;

}

}

111

A.2.4 (fasta.c

/***

fasta.c - routines for working with fastA files
begin : Sun Dec 12 1999
author : Kevin Pedretti
email : pedretti@eng.uiowa.edu

***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "uicluster.h"
#include "utils.h"
#include "fasta.h"
#include "options.h"
#include "cluster.h"
#include "memory.h"

static char *inLine; /* buffer to hold current input line */
static char *tag; /* the current tag line, sans > */
static char *inseq; /* buffer for current seq */

int readSeq(FILE * fd_fasta, FASTASeq * seq, FILE * fd_rej, int rc,
int nRejects)
{
int seqlen; /* length of current input seq */
int fs; /* the index of the first space in the tag
line */
int i;
char *status;

if (inLine == NULL) {
inLine = (char *) emalloc(MAXLINE * sizeof(char));
tag = (char *) emalloc(MAXLINE * sizeof(char));
inseq = (char *) emalloc(MAXSLEN * sizeof(char));
}

/* read until first sequence found */

status = fgets(inLine, MAXLINE, fd_fasta);

while ((status != NULL) && (inLine[0] != ’>’)) {
inLine = fgets(inLine, MAXLINE, fd_fasta);

}
/* if the start of a sequence was found, read it into memory */
if (inLine[0] == ’>’) {

chomp(inLine);

strcpy(tag, inLine + 1);

/* read the sequence data */

seqlen = 0;

inseq[0] = ’\0’;

status = fgets(inLine, MAXLINE, fd_fasta);

while ((status != NULL) && (inLine[0] != ’>’)) {
seqlen += strlen(chomp(inLine));
strcat(inseq, inLine);
status = fgets(inLine, MAXLINE, fd_fasta);

}

/* if the next sequence was found, put back inLine */
if (inLine[0] == ’>’) {
fseek(fd_fasta, -(strlen(inLine)), SEEK_CUR);

}

/* make sure the input sequence isn’t too long */

if (seqlLen >= MAXSLEN) {

eprintf("Sequence %s > MAXSLEN (%d)\n", tag, seqlen);

}

/* check to see if input sequence is a reject */

if (countBases(inseq) <= rc) {

/* if we have a handle on the reject file, output the reject to it */

if (fd_rej != NULL) {

fprintf(fd_rej, "%d. %s\n", nRejects + 1, tag);
printSeq(fd_rej, inseq, NBASESONLINE, 1);
}

}

/* readSeqs: reads fasta seqs into linked list rejecting

void readSeqs(FILE * fd, FILE * fdRej, int rc, FASTASeq ** head,

{

}

return REJECT_SEQ;
}

/* find the first space */

i=1£s =0;

while ((i < MAXSNAME) && (tag[il
i++;

}

fs = 1i;

printf("fs=Y)d, %s\n", fs, tag);

/* store the sequence name */
if (fs == 0) {

fs = MAXSNAME - 1;
}
strncpy(seq->name, tag, fs);
seq->name[fs] = ’\0’;
printf("\nl: %s\n", seq->name);

/* store the sequence */
strcpy(seq->seq, inseq);

return GOOD_SEQR;

H

) Ao

/* if we got here, there are no more segs */

I

char *inLine; /* buffer to hold current input line */

eturn NO_MORE_SEQS;

those with fewer than rc bases */

int *nSeqs, int #*nRej)

char *tag; /* the current tag line, sans > */

char *seq; /* buffer for current seq */

int seqlen; /* length of current input seq */

FASTASeq *tail; /* tail seq in list */
FASTASeq *tmp; /* current input seq */

i

int rej = 0; /* number of sequences rejected (shorter than

int fs; /* the index of the first space in the tag

i
c

i

nt ns = 0; /* number of sequences read */

rc) */

line */
nt i;
har *status;

nLine = (char *) emalloc(MAXLINE * sizeof(char));
tag = (char *) emalloc(MAXLINE * sizeof(char));

112

seq = (char *) emalloc(MAXSLEN * sizeof(char));

*head = tail = NULL;

while ((inLine = fgets(inLine, MAXLINE, fd)) '= NULL) {

if (inLine[0] == ’>’) {

++ns;

chomp (inLine) ;
strcpy(tag, inLine + 1);

seqlen = 0;

seq[0] = ’\0’;

status = fgets(inLine, MAXLINE, £fd);
while ((inLine[0] != ’>?’) && (status

seqlen += strlen(chomp(inLine));
strcat(seq, inLine);
status = fgets(inLine, MAXLINE, fd);

}
if (countBases(seq) > rc) {
tmp = getFASTASeq();
fs = 0;
i=0;
while ((i < MAXSNAME) && (tagl[i]l !'= > ’)) {
i++;
}
fs = i;

}

1= NULL)) {

/* Rewind to the begining of the line */
fseek(fd, -(strlen(inLine)), SEEK_CUR);

if (seqlen >= MAXSLEN) {
eprintf("Sequence %s > MAXSLEN (%d)\n", tag, seqlen);

if (fs == 0) {
fs = MAXSNAME - 1;

}

strncpy(tmp->name, tag, fs);

tmp->seq = (char *) emalloc((seqlen + 1) * sizeof(char));

strcpy(tmp->seq, seq);
tmp->next = NULL;

if (xhead == NULL) {
*head = tail = tmp;

}

}

if

}

else {

tail->next = tmp;

tail = tmp;

} else

{

(fdRej != NULL) {

++rej;

fprintf(fdRej, "%d. %s\n", rej, tag);
printSeq(fdRej, seq, NBASESONLINE, 1);

}
}
}

*nSeqs = ns;

*nRej = rej

free(inLine);

free(tag);
free(seq);

113

114

/* printSeq: print a fasta sequence */
void printSeq(FILE * fd, char *seq, int bpl, int nblanks)
{

int i, j = 0;
int len = strlen(seq);
char *ptr;

/* // original code for(i=0; i<len; i++) { putc (seq[il, fd); ++j; if (j ==
bpl) { putc ("\n’, £fd); j = 0; } } =/

ptr = seq;
for (i = 0; i < len; i++) {
putc(*ptr, fd);
+j;
++ptr;
if (j == vpl) {
putc(’\n’, £d);

i=0;
}
}
if (j '=0)
++nblanks;

for (i = 0; i < nblanks; i++)
putc(’\n’, £fd);

A.2.5 incremental.c
/***

incremental.c - routines for incremental clustering
begin : Wed Jan 12 2000
author : Kevin Pedretti
email : pedrettiCeng.uiowa.edu

***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "uicluster.h"
#include "utils.h"
#include "fasta.h"
#include "options.h"
#include "cluster.h"
#include "memory.h"
#include "incremental.h"

int readClusFiles(char *cfname, Primary ** head, Primary ** tail,
char *inFilesQut[], int div[])
{

FILE *fd_cf;

char *inFiles[MAXPRE];
int i;

int nCF;

int nPrimes;

int nSecnds;

/* handle case where no previously cluster files are input */
if (strcmp(cfname, "none") == 0)
return O;

115

for (i = 0; i < MAXPRE; i++) {

div[i] = -1;

inFiles[i] = (char *) emalloc((MAXFNAME + 1) * sizeof(char));
}

fd_cf = fopen(cfname, "r");
if (fd_cf == NULL)

eprintf("can’t open ¥%s:", cfname);

i=0;

while ((inFiles[i] = fgets(inFiles[i], MAXFNAME, fd_cf)) != NULL) {
chomp(inFiles[i]);
++i;

if (i > MAXPRE) {
eprintf(" too many previously clustered files.");
}
}
nCF = i;
fclose(fd_cf);

/* read in the primaries from the pre-clustered files */
¥head = *tail = NULL;
nPrimes = nSecnds = 0;
for (i = 0; i < nCF; i++) {
printf(" reading %s: ", inFiles[il]);
fd_cf = fopen(inFiles[i], "r");
if (fd_cf == NULL)
eprintf("can’t open %s:", inFiles[i]);
nPrimes = nSecnds = 0;
parseClusFile(fd_cf, head, tail, &nPrimes, &nSecnds);
printf("/d primaries, %d secondaries\n", nPrimes, nSecnds);
if (i == 0)
div[i] = nPrimes;
else
div[i] = div[i - 1] + nPrimes;
fclose(fd_cf);
¥

for (i = 0; i < nCF; i++) {
printf("%s\n", inFiles[i]);
inFilesOut[i] = inFiles[il];

¥

return (nCF);

}

int parseClusFile(FILE * fd, Primary #** head, Primary ** tail,
int *nPrimes, int *nSecnds)

{
char *inLine; /* buffer to hold current input line */
char xtag; /* the current tag line, sans QP */
char *seq; /* buffer for current primary seq */
int seqlen; /* length of current input primary seq */
Primary *tmp; /* current input primary */
Secondary *tmpS; /* current input secondary */
Secondary *s;
int fs; /* the index of the first space in the tag
line */
int i;
char *status;
inLine = (char *) emalloc(MAXLINE * sizeof(char));
tag = (char *) emalloc(MAXLINE * sizeof(char));
seq = (char *) emalloc(MAXSLEN * sizeof(char));

*nPrimes = *nSecnds = 0;

116

while ((inLine = fgets(inLine, MAXLINE, fd)) !'= NULL) {

if (inLine[0] == ’@’ && inLine[1] == ’P?) {
++(*nPrimes) ;
chomp(inLine) ;
strcpy(tag, inLine + 4);
seqlen = 0;
seq[0] = ’\0’;
status = fgets(inLine, MAXLINE, £fd);
while ((status != NULL) && (inLine[0] != ’@’)) {

seqlen += strlen(chomp(inLine));

strcat(seq, inLine);

status = fgets(inLine, MAXLINE, fd);
}
/* Rewind to the begining of the line */
fseek(fd, -(strlen(inLine)), SEEK_CUR);

if (seqlen >= MAXSLEN) {
eprintf(" Sequence %s > MAXSLEN (%d)\n", tag, seqlen);
}

tmp = getPrimary();

fs = 0;

i= 0;

while ((i < MAXSNAME) && (tagl[i] != "’ ’)) {
it++;

}

fs = i;

if (fs == 0) {
fs = MAXSNAME - 1;
}
tmp->name = (char *) emalloc((MAXSNAME + 1) % sizeof(char));
strncpy(tmp->name, tag, fs);
tmp->seq = (char *) emalloc((seqlen + 1) * sizeof(char));
strcpy(tmp->seq, seq);
tmp->next = NULL;
tmp->nHashes = 0;
tmp->nTouched = 0;
tmp->nSecondaries = 0; /* fixme */
tmp->hashes = NULL;
tmp->indexes = NULL;
tmp->headS = NULL;
tmp->nextCP = NULL;

if (*head == NULL) {
*head = *tail = tmp;
} else {
(*tail)->next = tmp;
*tail = tmp;
}
} else if (inLine[0] == ’@’ && inLine[1] == ’S’) {
++(*nSecnds) ;
chomp(inLine) ;
strcpy(tag, inLine + 4);
seqlen = 0;
seq[0] = ’\0’;
status = fgets(inLine, MAXLINE, £fd);
while ((status != NULL) && (inLine[0] != ’@’)) {
seqlen += strlen(chomp(inLine));
strcat(seq, inLine);
status = fgets(inLine, MAXLINE, fd);
}
/* Rewind to the begining of the line */

117

fseek(fd, -(strlen(inLine)), SEEK_CUR);
if (seqlen >= MAXSLEN) {

eprintf(" Sequence %s > MAXSLEN (%d)\n", tag, seglen);
}

tmpS = getSecondary();

fs = 0;

i= 0;

while ((i < MAXSNAME) && (tag[il '= > ?)) {
++1i;

}

fs = i;

if (fs == 0) {
fs = MAXSNAME - 1;
}

tmpS->name = (char *) emalloc((MAXSNAME + 1) * sizeof(char));
strncpy (tmpS->name, tag, fs);

tmpS->seq = (char *) emalloc((seqlen + 1) * sizeof(char));
strcpy(tmpS->seq, seq);

tmpS->next = NULL;

sscanf(tag + fs, "%4d %d %d %1f", &(tmpS->iP), &(tmpS->iS),
& (tmpS->matchLen), &(tmpS->score));

if (taglstrlen(tag) - 2] == ’D’) {
tmpS->dir = FORWARD;

} else if (tag[strlen(tag) - 2] == ’P’) {
tmpS->dir = REVCOMP;
}

/* Add the secondary to the current primary */
if (tmp->headS == NULL) {
tmp->headS = tmpS;
} else {
s = tmp->headsS;
while (s->next != NULL) {
s = s->next;

}
s->next = tmpS;
}
++(tmp->nSecondaries) ;
} else if (inLine[0] == ’@’ && inLine[1] == ’V’) {
chomp (inLine) ;

strcpy(tag, inLine + 5);

/* read the sequence */

seqlen = 0;

seq[0] = ’\0’;

status = fgets(inLine, MAXLINE, £fd);

while ((status != NULL) && (inLine[0] != ’@’)) {

seqlen += strlen(chomp(inLine));

strcat(seq, inLine);

status = fgets(inLine, MAXLINE, £fd);
}
/* Rewind to the begining of the line */
fseek(fd, -(strlen(inLine)), SEEK_CUR);

if (seqlen >= MAXSLEN) {
eprintf(" Sequence %s > MAXSLEN (%d)\n", tag, seglen);
}

118

tmp->vp = (char *) emalloc((seqlen * 2) + 1);
strcpy (tmp->vp, seq);

tmp->vplLen = seqlen;

tmp->maxvplLen = seqlen * 2;

/* parse the tag line */
sscanf(tag, "%d %d %d %d %d\n", tmp->nInternal, tmp->nBothExt,
tmp->nFrontExt, tmp->nTailExt, tmp->nProblems);
}
}

free(inLine);
free(tag);
free(seq);

return (*nPrimes);

A.2.6 memory.c

KKK KoK oK o KK oK o KoK ok o KK o K KoK o KoK ok oK KoK o K Kok o KoK o K ok o K K o KoK o KoK ok K oK o Kok o Kok ok K ok sk ok ok

memory.c - memory block allocation routines
begin : Tue Dec 14 1999
author : Kevin Pedretti
email : pedretti@eng.uiowa.edu

***/

#include <stdio.h>
#include <stdlib.h>
#include "uicluster.h"
#include "utils.h"
#include "fasta.h"
#include "options.h"
#include "cluster.h"
#include "memory.h"

static GHTEntry #*ghtMem;

static Primary *pMem;

static Secondary *slMem;

static FASTASeq *fslMem;

/*static char *seqMem; */
static int ghtIndex = GHTBLOCK;
static int fsIndex = FASTABLOCK;
static int pIndex = PRIMEBLOCK;
static int sIndex = SECNDBLOCK;

GHTEntry *getGHTEntry()
{

GHTEntry *tmp;

if (ghtIndex >= GHTBLOCK) {
/* Array is full, make a new one. */
ghtMem = (GHTEntry *) emalloc(GHTBLOCK * sizeof (GHTEntry));
ghtIndex = 0;

}

tmp = ghtMem + ghtlndex;

ghtIndex++;

return (tmp);

}

Primary *getPrimary()

{

119

Primary *tmp;

if (pIndex >= PRIMEBLOCK) {
/* Array is full, make a new one. */
pMem = (Primary *) emalloc(PRIMEBLOCK * sizeof(Primary));
pIndex = 0;

}

tmp = pMem + plndex;

pIndex++;

return (tmp);

}

Secondary *getSecondary()
{

Secondary *tmp;

if (sIndex >= SECNDBLOCK) {
/* Array is full, make a new one. */
sMem = (Secondary *) emalloc(SECNDBLOCK * sizeof(Secondary));
sIndex = 0;

}

tmp = sMem + sIndex;

sIndex++;

return (tmp);

FASTASeq *getFASTASeq()
{

FASTASeq *tmp;

if (fsIndex >= FASTABLOCK) {
/* Array is full, make a new one. */
fsMem = (FASTASeq *) emalloc(FASTABLOCK * sizeof (FASTASeq));
fsIndex = 0;

}

tmp = fsMem + fsIndex;

fsIndex++;

return (tmp);

A.2.7 options.c

KKK KoK oK o KoK o o KoK ok o KK o K KoK o KoK ok oK KoK o K Kok o KoK o KK ok o K K o KoK o KK ok oK oK o Kok o Kok ok K ok sk ok ok

options.c - parse options for Ulcluster
begin : Sun Dec 12 1999
author : Kevin Pedretti
email : pedrettiCeng.uiowa.edu

***/

#include <stdio.h>
#include <stdlib.h>
#include "getopt.h"
#include "uicluster.h"
#include "options.h"
#include "utils.h"

/* called by main to get the user-defined parameters. options can
come from either the command line or the configuration file. the
command line has priority

*/

int getopts(Options * o, int argc, char **argv)

int c;
int option_index = 0;

static struct option long_opts[] = {

};

{"preClus", 1, 0, O},
{"rejCrit", 1, 0, 0},
{"hashSize", 1, 0, O},
{"startSkip", 1, 0, 0},
{"endSkip", 1, 0, 0},
{"matchLen", 1, 0, 0},
{"errLimit", 1, 0, 0},
{"maskChar", 1, 0, O},
{"repick", 0, 0, 0},
{"tryRevC", 0, 0, O},
{"hitThresh", 1, 0, 0},
{"wrongPen", 1, 0, 03},
{"gapPen", 1, 0, 0},
{"wrongPen", 1, 0, 03},
{"keepGoing", 0, 0, 0},
{"vPrimary", 0, 0, O},
{"help", 0, 0, O},

{0, 0, 0, 0O}

/* These aren’t very good short option
static char *short_opts = "F:R:H:S:s:M:E:C:h:P:p:";

/* initially set options to hard-coded
strcpy((*0) .preCFile, "none");

(*0) .rejCrit = 100;

(*0) .hashSize = 8;

(*o0) .startSkip
(*0) .endSkip =

(*0) .1lenToMatch
(*0) .errLimit

(*0) .maskChar

(*0) .repick = 0;
(*0) .tryRevC = 0;
(*0) .hitThresh =
(*0) .wrongPen =
(*0) .gapPen = 1;

= 18;
0
40;

2;
JXJ;

o

16;
1;

(*0) .keepGoing = 0;
(*o0) .vPrimary = 0;

/* parse command line */
c = getopt_long(argc, argv, short_opts, long_opts, &option_index);
while (¢ != -1) {

(*0)

(*0)

(*0)

(*0)

switch (c) {
case 0O:
if (stremp(long_opts[option_index].

strcpy((*o) .preCFile, optarg);

if (strcmp(long_opts[option_index].
.rejCrit = atoi(optarg);

}

if (strcmp(long_opts[option_index].
.hashSize = atoi(optarg);

}

if (strcemp(long_opts[option_index].
.startSkip = atoi(optarg);

}

if (strcmp(long_opts[option_index].
.endSkip = atoi(optarg);

}

names

*/

defaults */

name,

name,

name,

name,

name,

"preClus") == 0) {

"rejCrit") == 0) {

"hashSize") == 0) {

"startSkip") == 0) {

"endSkip") == 0) {

120

if (strcmp(long_opts[option_index].name,

(*0) .lenToMatch = ato

}

i(optarg);

if (strcmp(long_opts[option_index].name,

(*0) .errLimit =

}

atoi(optarg);

if (strcemp(long_opts[option_index].name,

if (strlen(optarg) ==
(*0) .maskChar =
} else {

wprintf (" mask char can only be one letter");

return (FAILURE);
}
}

if (strcmp(long_opts[option_index].

(*0) .hitThresh =

}

atoi

if (strcmp(long_opts[option_index]

(*0) .wrongPen = atoi(

}

if (strcemp(long_opts[option_index]
atoi(optarg);

(*0) .gapPen =

}

if (strcmp(long_opts[option_index]

(*0) .tryRevC = 1;

}

if (strcmp(long_opts[option_index]

(*0)

.repick = 1;

}

if (strcemp(long_opts[option_index]

(*0) .keepGoing = 1;

}

if (strcemp(long_opts[option_index]

(*0)

.VPrimary = 1;

}

if (strcemp(long_opts[option_index]

printUsage();
return FAILURE;
}

break;

case ’F’:

o

optarg[0];

(optarg);

optarg);

strcpy((*o) .preCFile, optarg);

break;

case ’R’:
(*0).rejCrit =
break;

case ’H’:
(*0) .hashSize =
break;

case ’S’:
(*0) .startSkip
break;

case ’s’:
(*0) .endSkip =
break;

case 'M’:
(*0) .lenToMatch
break;

case ’E’:
(*0) .errLimit =
break;

case ’C’:
if (strlen(opta

atoi(optarg);

atoi(optarg);

= atoi(optarg);

atoi(optarg);

= atoi(optarg);

atoi(optarg);

rg) == 1) {

name,

.name,

.name,

.name,

.name,

.name,

.name,

.name,

121

"matchLen") == 0) {
"errLimit") == 0) {
"maskChar") == 0) {

"hitThresh") == 0) {

"wrongPen") == 0) {

"gapPen") == 0) {

"tryRevC") == 0) {

"repick") == 0) {

"keepGoing") == 0) {

"yPrimary") == 0) {

"help") == 0) {

(*0) .maskChar = optarg[0];
} else {

wprintf (" mask char can only be one letter");

return (FAILURE);

}
break;

case ’h’:
(*0) .hitThresh = atoi(optarg);
break;

case ’P’:
(*0) .wrongPen = atoi(optarg);
break;

case ’p’:
(*0) .gapPen = atoi(optarg);
break;

default:

wprintf (" unexpected command line option option -- %o", c);

return (FAILURE);
¥
c
¥

/* get the name of the input fasta file

if (optind == (argc - 1)) {
strcpy((*o).inFile, argv[optind]);

} else if (optind == (argc)) {

*/

wprintf (" no input FASTA file specified\n");

printUsage();
return FAILURE;

} else if (optind < (argec - 1)) {
wprintf

= getopt_long(argc, argv, short_opts, long_opts, &option_index);

(" too many non-option parameters -- only specify one input FASTA file.\n");

printUsage();
return FAILURE;
}

return SUCCESS;
}

/* prints usage information */
void printUsage()
{
printf ("%s %s Usage:
progname(), getversion());
printf("\n");

uicluster [options] input_fasta_file\n",

printf(" Valid Options: (defaults are in parenthesis)");

printf("\n");

printf

(@ -F, --preClus specifies
printf

(@ -R, --rejCrit specifies
printf

o -H, --hashSize specifies
printf

(@ -S, --startSkip specifies
printf

. -s, --endSkip specifies
printf

. -M, --matchLen specifies
printf

. -E, --errLimit specifies
printf

. -C, --maskChar specifies
printf

o -h, --hitThresh specifies

the

the

the

the

the

the

the

the

the

preClustered infile
rejection criteria
hash size

start skip

end skip

length to match
error limit

mask character

hit threshold

(none)\n");
(100 bases)\n");
(8 bases)\n");
(18 bases)\n");
(0 bases)\n");
(40 bases)\n");
(2 bases)\n");

CX)\n");

(16)\n");

122

123

printf

. -P, --wrongPen specifies the wrong penalty (D\n");
printf

. -p, --gapPen specifies the gap penalty (O\n");
printf

. --repick repick cluster primaries (of£)\n");
printf

. --tryRevC check reverse compliment (off)\n");
printf

(@ --keepGoing perform exhaustive search (off)\n");
printf

(@ --vPrimary generate virtual primary (off)\n");
printf(" --help view this message\n");
printf("\n\n");

}

/* prints all user-defined parameters to the stream fd */
void printopts(FILE * fd, Options o)

{
fprintf(fd, "Using Options:\n");
fprintf(£fd, " Input File = %s\n", o.inFile);
fprintf(fd, " Preclus File = ¥s\n", o.preCFile);
fprintf(£fd, " Reject Crit = %4d Hash Size = %4d\n", o.rejCrit,
o.hashSize);
fprintf(£fd, " Start Skip = %4d End Skip = %4d\n",
o.startSkip, o.endSkip);
fprintf(fd, " Match Len = %4d Error Lim = %4d\n",
o.lenToMatch, o.errLimit);
fprintf(fd, " Mask Char = hdc Repick = %4d\n", o.maskChar,
o.repick);
fprintf(fd, " Try RevC = %4d Hit Thresh = %4d\n", o.tryRevC,
o.hitThresh);
fprintf(£fd, " Wrong Pen = %4d Gap Pen = %4d\n", o.wrongPen,
o.gapPen) ;
fprintf(£fd, " Keep Going = %4d vPrimary = %4d\n",
o.keepGoing, o.vPrimary);
}
A.2.8 gsort.c
KKK Kok o Kok ok Kok ok K Kok ok ok o Kok o K KoK o Kok ok K Kok o K Kok o Kok o K ok o KK o Kok o ok ok o Kok o Kok o Kok ok Kok ok Kok
gsort.c - stand-alone quick sort
begin : Mon Dec 13 1999
author : Kevin Pedretti
email : pedrettiCeng.uiowa.edu

***/

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include "gsort.h"

/* Do a quick sort on data[] while maintaining consistancy with index[].
NOTE: This sort routine sorts data[l..n] NOT data[O..n-1].
The caller should account for this.
based on code in Numerical Recipes in C, Second Edition

*/

void gsortWIndx(unsigned long n, int data[], int index[])
{

unsigned long i, ir = n, j, k, 1 = 1;

int *istack, jstack 0;

int a, b, temp;

124

istack = ivector(1l, NSTACK);
for (5;) {
if (ir - 1 < M) {
for (j =1+ 1; j <= ir; j++) {
= dataljl;
index[j];
for (1 =3 -1; i>1; i--) {
if (datali] <= a)
break;
data[i + 1] = datal[il;
index[i + 1] = index[i];
}
datal[i + 1] = a;
index[i + 1] = b;
}
if (!jstack) {
free_ivector(istack, 1, NSTACK);
return;
}
ir = istack[jstack];
1 = istack[jstack - 1];
jstack -= 2;
} else {
k = (1 + ir) > 1;
SWAP(datal[k], data[l + 1])
SWAP(index[k], index[1l + 1])
if (data[l] > datalir]) {
SWAP(data[l], datal[ir])
SWAP (index[1], index[ir])
}
if (datal[l + 1] > datal[ir]) {
SWAP(data[l + 1], datal[ir])
SWAP(index[1 + 1], index[ir])
}
if (datal[l] > datall + 1]) {
SWAP(datal[l], datal[l + 1])
SWAP (index[1], index[1 + 1])

[o 2
no

}
i=1+1;
j = ir;
a = datal[l + 1];
b = index[1l + 1];
for (53) {

do

it+;
while (datal[i] < a);
do

while (datal[j]l > a);
if (j < 1)
break;
SWAP(datal[i], datal[jl)
SWAP(index[i], index[jl)

}

data[l + 1] = data[jl;
datal[j] = a;

index[1l + 1] = index[j];
index[j] = b;

jstack += 2;
if (jstack > NSTACK)
nrerror ("NSTACK too small in sort2.");
if (dr - i+ 1> j - 1) {
istack[jstack] = ir;
istack[jstack - 1] = i;
ir =j - 1;

} else {
istack[jstack] = j - 1;
istack[jstack - 1] = 1;
1 =1i;

}

}
}
}

/* display an error and exit */

void nrerror(char error_text[])

{
fprintf(stderr, "Sorting run-time error...\n");
fprintf(stderr, "¥s\n", error_text);
fprintf(stderr, "...now exiting to system...\n");
exit(1);

}

/* allocate memory for an integer array */
int *ivector(long nl, long nh)
{
int *v;
v = (int *) malloc((size_t) ((nh - nl + 1 + NR_END) * sizeof(int)));
if (lv)
nrerror("allocation failure in ivector()");
return v - nl + NR_END;
}

/* free an integer aray */
void free_ivector(int *v, long nl, long nh)
{
free ((FREE_ARG) (v + nl - NR_END));
}

A.2.9 utils.c

KKK Ko oK o KoK oK o oK ok o KoK o K KoK o KoK ok oK KoK o K Kok o KoK o K ok o K K o KoK o KK ok K oK o Kok o Kok ok K ok sk ok ok

utils.c - some useful utilities for Ulcluster
begin : Sun Dec 12 1999
author : Kevin Pedretti
email : pedrettiCeng.uiowa.edu

***/

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <unistd.h>
#include <time.h>

#include <string.h>
#include <errno.h>
#include "utils.h"

static char *name = NULL; /* Program name for messages */
static char *version = NULL; /* Program version */
static int mc; /* total num malloc calls made */

/* returns the total num of malloc calls made so far */
int nmallocs()
{

return mc;

}

/* store name of program */
void setprogname(char *str)

125

126

{
name = estrdup(str);

}

/* return stored name of program */
char *progname(void)
{

return name;

}

/* store version number */
void setversion(char *str)
{

version = estrdup(str);

}

/* return stored version number */
char *getversion(void)

{
return version;
}
/* print error message and exit program */
void eprintf(char *fmt, ...)
{

va_list args;

fflush(stdout);

if (progname() != NULL) {
fprintf(stderr, "Ys:", progname());

}

/* print the error message */
va_start(args, fmt);

viprintf (stderr, fmt, args);
va_end(args) ;

/* print the errno if the put a ’:’ at end of fmt */

if (fmt[0] !'= ’\0’ && fmt[strlen(fmt) - 1] == ?:’) {
fprintf(stderr, " ¥s", strerror(errno));

}

fprintf(stderr, "\n");

exit (EXIT_FAILURE);

}
/* print warning message */
void wprintf(char *fmt, ...)
{

va_list args;

fflush(stdout);

if (progname() != NULL) {
fprintf(stderr, "%s:", progname());

}

/* print the warning message */
va_start(args, fmt);

viprintf (stderr, fmt, args);
va_end(args) ;

/* print the errno if the put a ’:’ at end of fmt */

if (fmt[0] !'= ’\0’ && fmt[strlen(fmt) - 1] == ’:’) {
fprintf(stderr, " ¥s", strerror(errno));

}

fprintf(stderr, "\n");

}

/* duplicate a string, terminate program if malloc error occurs */

char *estrdup(char *s)

{

char *t;

/* would like to know if we caused the malloc error so call malloc

directly... not emalloc() */
++mc; /* increment malloc calls counter */
t = (char *) malloc(strlen(s) + 1);
if (t == NULL) {
eprintf("estrdup(\"%.20s\") failed:", s);
¥
strcpy(t, s);
return t;

}

/* call malloc, terminate program if malloc error occurs */
void *emalloc(size_t n)
{

void *p;

++mc; /* increment malloc calls counter */
p = malloc(n);
if (p == NULL) {
printf("malloc of %u bytes failed:", n);
eprintf("tot # malloc calls: %d", mc);
}
return p;

}

/* call calloc, terminate program if calloc error occurs */
void *ecalloc(size_t n, size_t s)
{

void *p;

++mc; /* increment malloc calls counter */
p = calloc(n, s);
if (p == NULL) {
printf("calloc of %u bytes failed:", n);
eprintf("tot # malloc calls: %d", mc);
}
return p;

}

/* call realloc, terminate program if realloc error occurs */
void *erealloc(void *p, size_t s)
{
++mc; /* increment malloc calls counter */
p = realloc(p, s);
if (p == NULL) {
printf("realloc of %u bytes failed:", s);
eprintf("tot # malloc calls: %d", mc);
}
return p;

}

/* remove ’\n’ from end of string if is there... like perl’s chomp */

char *chomp(char *in)
{
int len = strlen(in);
if (in[len - 1] == ’\n’) {
in[len - 1] = ’\0’;
}

127

128

return (in);

}

/* count the number of bases (4,C,G,T not X or N) in a DNA string */
int countBases(char *in)
{

int i; /* counter */

int n = 0; /* number of bases */

int len = strlen(in);

for (i = 0; i < len; i++) {

if ((in[i] == ’A?) |l (@in[i]l == ’C’) || (in[i]l == °G’)
Il (in[i]l == 'T’)) {
++n;
}
}
return n;
}

/* raise base to the exp power */
int ipower(int base, int exp)
{

int i, ret = 1;

for (i = 0; i < exp; i++) {

ret *= base;
}
return (ret);

}

/* reverse compliment a DNA string, assume out big enough to store in */
void revComp(char *in, int len)
{

int j = 0, 1i;

/* reverse the string */

for (i = (len - 1); i > ((len - 1)) / 2; i--) {
in[j] = in[il;
jHs

}

/* compliment the string */
for (i = 0; i < len; i++) {
if (in[i] == ’A?)

in[i] = ’T’;

else if (in[i] == ’T’)
in[i] = ’A’;

else if (in[i] == ’C’)
in[i] = °G’;

else if (in[i] == ’G’)
in[i] = ’C’;

else if (in[i] == ’a’)
in[i] = ’t’;

else if (in[i] == ’t’)
in[i] = ’a’;

else if (in[i] == ’c’)
in[i] = ’g’;

else if (in[i] == ’g’)
in[i] = ’c¢’;

¥
}

/* print nicely the difference between two times */
char *printTime(time_t startTime, time_t stopTime)
{

int elapsedTime;

int elapsedDays;

int elapsedHrs;
int elapsedMins;
int elapsedSecs;
char *out;

elapsedTime = (int) difftime(stopTime, startTime);
if (elapsedTime >= 86400) {
elapsedDays = elapsedTime / 86400;
elapsedTime = elapsedTime % 86400;
} else {
elapsedDays

0;

}

if (elapsedTime >= 3600) {
elapsedHrs = elapsedTime / 3600;
elapsedTime = elapsedTime % 3600;

} else {
elapsedHrs = 0;

}

if (elapsedTime >= 60) {
elapsedMins = elapsedTime / 60;
elapsedTime = elapsedTime % 60;

} else {
elapsedMins

0;
}

elapsedSecs = elapsedTime;

/* change this so 1000 not hard coded - opps */
out = (char *) emalloc(1000 * sizeof(char));
sprintf(out, "%d days, %d hours, %d mins, %d secs",
elapsedDays, elapsedHrs, elapsedMins, elapsedSecs);

return (out);

A.2.10 bl2seq.c

R K K KoK oK KK oo o K ok o KK o K KoK o KoK ok oK KoK o K Kok o KoK o K ok o K K o KoK o KK ok oK oK o Kok o Kok ok K ok sk ok ok

bl2seq.c - runs bl2seq on two sequences
begin : Sun Mar 18 2001
author : Kevin Pedretti
email : pedrettiCeng.uiowa.edu

***/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include "utils.h"
#include "bl2seq.h"

void bl2seq(char #*seql, int seqllen, char *seq2, int seq2len,
bl2seq_hit * hits, int *nHits)
{
FILE *SEQ1;
FILE *SEQ2;
FILE *0UT;
int i;
int n = 0;
char *p;

/* open temporary files to store sequences to bl2seq */
SEQ1 = fopen("/tmp/seql.fasta", "w+");
SEQ2 = fopen("/tmp/seq2.fasta", "wt+");

129

130

if (SEQ1 == NULL || SEQ2 == NULL) {
eprintf("can’t open files for bl2seq\n");
}

/* bl2seq discards X’s so we must be sure to change them */
/* print seql to file, changing X’s to N’s */
fprintf (SEQL, ">seql\n");
for (i = 0; i < seqllen; i++) {
if (seqi[i] !'= ’X’) {
fputc(seql[i], SEQ1);

} else {
fputc(’N’, SEQ1);
}
¥
fprintf(SEQL, "\n");
fclose(SEQL);

/* print seq2 to file, changing X’s to N’s */
fprintf(SEQ2, ">seq2\n");
for (i = 0; i < seq2Len; i++) {
if (seq2[i] !'= ’X?)
fputc(seq2[i], SEQ2);
else
fputc(’N’, SEQ2);
¥
fprintf(SEQ2, "\n");
fclose(SEQ2);

/* call bl2seq on the two sequences */
call_bl2seq("/tmp/seql.fasta", "/tmp/seq2.fasta", "/tmp/bl2seq.out");

/* open the bl2seq output file */
OUT = fopen("/tmp/bl2seq.out", "r");
if (OUT == NULL) {
eprintf("can’t open bl2seq output file");
}

/* parse the hits from the file. */
*nHits = parse_hits(OUT, hits);
fclose (0UT);

}

int parse_hits(FILE * fd, bl2seq_hit * hits, int maxHits)
{
char inLine[BL2SEQ_MAXLINE];
int state = STATE_INIT;
int curHit = 0;
int in;
int isEnd;
int nStarts, nlLens, nStrands;
int sbl, sb2, lastsbl, lastsb2;
int lastlen;
int laststrandl, laststrand2;

while (fgets(inLine, BL2SEQ_MAXLINE, fd) != NULL) {
if (state == STATE_INIT) {
if (strstr(inLine, "starts {") != NULL) {
state = STATE_STARTS;
nStarts = 0;
isEnd = 0;
// printf("START HIT %d\n", curHit);
// printf("STARTS = \n");
}
if (strstr(inLine, "lens {") != NULL) {
state = STATE_LENS;

131

nLens = 0;
isEnd = 0;
// printf("LENS = \n");

}

if (strstr(inLine, "strands {") !'= NULL) {
state = STATE_STRANDS;
nStrands = 0;
isEnd = 0;
// printf("STRANDS = \n");

}

} else {

if (state != STATE_STRANDS) {
/* parse a number from the input line */
in = atoi(inLine);

} else {
/* parse the direction from the input line */
if (strstr(inLine, "plus")) {

in = PLUS;
} else {
in = MINUS;
}
}

/* determine if this is the last entry at the current state */
if (strstr(inlLine, "}") != NULL) {

isEnd = 1;
}

if (state == STATE_STARTS) {
if (nStarts == 0) {

sbl = in;

} else if (nStarts == 1) {
sb2 = in;

}

/* always store the last start pair */
if ((nStarts % 2) == 0) {
lastsbl = in;
} else {
lastsb2 = in;
}
++nStarts;
} else if (state == STATE_LENS) {
lastlen = in;
++nlens;
} else if (state == STATE_STRANDS) {
if ((nStrands % 2) == 0) {

laststrandl = in;
} else {
laststrand2 = in;
}
++nStrands;
}

if (isEnd == 1) {

/* if STATE_STRANDS, we'’re at the end of a hit */
if (state == STATE_STRANDS) {

/* store the current hit */

hits[curHit].sbl = sbl;

hits[curHit].ebl lastsbl + lastlen - 1;

hits[curHit].sb2 sb2;

hits[curHit].eb2 lastsb2 + lastlen - 1;

/* figure out the dir value to store */
if ((laststrandl == PLUS) && (laststrand2 == PLUS)) {
hits[curHit].dir = PP;

132

} else if ((laststrandl == PLUS) && (laststrand2 == MINUS)) {
hits[curHit].dir = PM;
} else if ((laststrandl == MINUS) && (laststrand2 == PLUS)) {
hits[curHit].dir = MP;
} else if ((laststrandl == MINUS) && (laststrand2 == MINUS)) {
hits[curHit].dir = MM;
¥
++curHit;
}
state = STATE_INIT;
}
¥
}
return curHit;

}

/* environ defined in unistd.h */
extern char **environ;

/* simple wrapper function to call bl2seq.

* seql and seq2 are the two input file names.

* out is the output filename to use.

*/

int call_bl2seq(char *seql, char *seq2, char *out)
{

int pid, status;

if (seql == NULL || seq2 == NULL) {
return 1;

}

pid = fork();

if (pid == -1) {
return -1;

}

/* setup the arguments to pass to bl2seq */
if (pid == 0) {

char *argv[13];

argv[0] = "bl2seq";

argv[1] = "-i";
argv[2] = seql;
argv [3] = ||_j n ;
argv[4] = seq2;
argv [5] = ||_p|| ;
argv[6] = "blastn";
argv[7] = "-o";
argv[8] = "/dev/null";
argv[9] = "-a";
argv[10] = out;
argv[11] = "-FF";
argv[12] = 0;
execve("/mnt/rO-blastdb/blast-bin/bl2seq", argv, environ);
exit (127);
}
/* try until for child, retrying if we’re interrupted */
do {
if (waitpid(pid, &status, 0) == -1) {

if (errno != EINTR) {
return -1;
}
} else {
return status;
}
} while (1);
}

1]

(6]

7]

[10]

133

REFERENCES

M.D. Adams, J.M. Kelley, J.D. Gocayne, M. Dubnick, M.H. Polymeropoulos, H.
Xiao, C.R. Merril, A. Wu, B. Olde, R.F. Moreno, et al., Complementary DNA
sequencing: Fxpressed sequence tags and the human genome projectr,. Science
252 (1991) 1651-1656.

M.D. Adams, A.R. Kerlavage, R.D. Fleishmann, R.A. Fuldner, C.J. Bult, N.H.
Lee, E.F. Kirkness, K.G. Weinstock, J.D. Gocayne, O. White et al., Initial as-
sessment of human gene diversity and expression patterns based upon 83 million
nucleotides of cDNA sequence, Nature 377 (1995) 3-17.

S.F. Altshul, W. Gish, W. Miller, E.W. Meyers, D.J. Lipman, Basic local align-
ment search tool, Journal of Molecular Biology 215 (1990) 403-410.

D.J. Becker, T. Sterling, D. Savarese, J.E. Dorband, U.A. Ranawak, C.V. Packer,
Beowulf: A Parallel Workstation for Scientific Computation, International Con-
ference on Parallel Processing Proceedings (1995).

M.F. Bonaldo, G. Lennon, M.B. Soares, Normalization and subtraction: two
approaches to facilitate gene discovery, Genome Research 6 (1996) 791-806.

T.A. Braun, Personal Communication.

C. Burge, S. Karlin, Prediction of complete gene structures in human genomic
DNA, Journal of Molecular Biology 268 (1997) 78-94.

J. Burke, D. Davison, W. Hide, d2_cluster: A Validated Method for Clustering
EST and Full-Length ¢cDNA Sequences, Genome Research 9 (1999) 1135-1142.

J.P. Burke, H. Wang, W. Hide, D. Davison, Alternative gene form discovery and
candidate gene selection from gene indexing projects, Genome Research 8 (1998)
276-290.

T.L. Casavant, Coordinated Laboratory for Computational Genomics
http://genome.uiowa. edu.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

134

T.L. Casavant, Manuscript in preparation.
FastA format description, http://www.ncbi.nlm.nih.gov/BLAST/fasta.html.
P. Green, Phrap, unpublished data, http://www.phrap.org.

X. Guan, R.J. Mural, R.R. Einstein, R.C. Mann, E.C. Uberbacher, GRAIL: An
Integrated Artificial Intelligence System for Gene Recognition and Interpretation,
Proceedings of the Eighth IEEE Converence on Al Applications (1992) 9-13.

D. Gustield, Algorithms on Strings, Trees, and Sequences, Cambridge University
Press, New York, 1997.

C. Horstmann and G. Cornell Core Java 2, Volume 1: Fundamentals Prentice
Hall PTR, United States, 2000.

International Human Genome Sequencing Consortium, [Initial sequencing and
analysis of the human genome, Nature 409 (2001) 860-921.

B. Kernighan and D. Ritchie, The C' Programming Language, 2nd Edition, Pren-
tice Hall, Upper Saddle River, New Jersey, 1989.

Message Passing Interface Form, MPI: A message-passing interface standard,
University of Tennessee Technical Report CS-94-230 (1994).

R.T. Miller, A.G. Christoffels, C. Gopalakrishnan, J.A. Burke, A.A. Ptitsyn,
T.R. Broveak, W.A. Hide, A comprehensive approach to clustering of expressed
human gene sequence: The Sequence Tag Alignment and Consensus Knowledge-
base Genome Research 9 (1999) 1143-1155.

J.D. Parsons, S. Brenner, M.J. Bishop, Clustering cDNA Sequences Computa-
tional Applications in Bioscience 8 (1992) 461-466.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes
in C, 2nd Edition, Cambridge University Press, New York, 1992.

S.L. Salzberg, D.B. Searls, S. Kasif, Computational Methods in Molecular Biol-
ogy, Elsevier Science B.V., Amsterdam, 1998.

F. Sanger, S. Nicklen, A.R. Coulson, DNA sequencing with chain-terminating

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

135

inhibitors, Proceedings of the National Academey of Science of the United States
of America 74 (1997) 5463-5467.

T.E. Scheetz, Development of genomic resources for the rat: an EST map and
analysis of alternative polyadenylation, PhD Thesis, University of Iowa, May
2001.

T.E. Scheetz, C.L. Birkett, C.A. Roberts, J.M. Gardiner, D.Y. Nishimura, V.C.
Sheffield, M.B. Soares, T.L. Casavant, Efficient, Exact Clustering Analysis of
ESTs to Support Serial Subtraction of Pooled cDNA Libraries, Proceedings of the

1999 Human Genome and Sequencing Meeting, Cold Spring Harbor Laboratory,
Long Island, NY.

G.D. Schuler, Pieces of the puzzle: expressed sequence tags and the catalog of
human genes. Journal of Molecular Medicine 75 (1997) 694-698.

AF. Smit and P. Green, RepeatMasker, unpublished data,
http:/ /repeatmasker.genome.washington. edu.

T.F. Smith and M.S. Waterman, Identification of common molecular subse-
quences, Journal of Molecular Biology 147 (1981) 195-197.

W.R. Stevens, Advanced Programming in the UNIX Environment, Addison
Wesley, United States, 1997.

T.A. Tatusova and T.L. Madden, Blast 2 sequences — a new tool for comparing
protein and nucleotide sequences”, FEMS Microbiology Letter 174 (1999) 247-
250.

K. Thompson, UNIX Implementation, Bell Systems Technical Journal 57 (1978)
1931-1946.

United States Congress, Office of Technology Assessment, Mapping Our Genes—
The Genome Projects: How Big? How Fast?, OTA-BA-373, U.S. Government
Printing Office, Washington, DC, 1998.

J.C. Venter, Identification of new human receptor and transporter genes by high
throughput ¢cDNA (EST) sequencing, Journal of Pharmacy and Pharmacology
45 (1993) 355-360.

136

[35] L. Wall, T. Christiansen, R.L. Schwartz, Programming Perl, 2nd Edition,
O’Reilly & Associates, United States, 1996.

